
gent

agent

also

agent

other,

ngs that

other

t and

r and

er to
Towards full agent interoperability

Bruno Dillenseger, Huan Tran Viet — CNET France Télécom

{ bruno.dillenseger | huan.tranviet }@cnet.francetelecom.fr

BP 98, F-38243 MeylanCEDEX, France

abstract. This paper introduces a CORBA service dedicated to the transport of a

communication. It explains how this service completes the emerging standards in

technology to enhance interoperability, while supporting peculiarities of mobile agents. It

shows how this service may be customized to support a variety of message-based

communication models.

1 On agent interoperability and cooperation

1.1 Introduction

How can heterogeneous agents, in an open distributed environment, talk to each

understand each other, and then negotiate, cooperate, etc.? As a matter of fact, these thi

we call agents are expected to be autonomous and interact with their environment and

agents in order to exhibit smart behaviour and solve complex distributed problems.

On high levels, agents need a common

knowledge core, featuring a minimal conceptual

framework modelling their environment, and

other agents. On lower levels, agents need an

actual infrastructure to interact, a support for

exchanging information. To summarize, agents

must be able tocommunicate, which implies

coping with several levels of heterogeneity

(figure 1):

• on the upper level, a common semantics must be shared about the environmen

things agents deal with;

• on the middle level, a common language must be specified, with its syntax, gramma

protocols (e.g. speech acts) so that negotiation and cooperation can be managed;

• on the lower level, a communication transport architecture must be specified in ord

manage the network layers, computing resources and data coding.

figure 1: the levels of heterogeneity for agent
communication.

transport

semantics

language syntax, grammar,
protocols (speech acts)

network layers, data coding,
communication architecture
1

sults

agent

SIF

the

ing

ween

urity,

kup;

, its

, and

an an

may

use of

ally,

t, the

actual

basic

as

logy,

king

as a

ted in
As standardization is a key issue for full agent interoperability, we see that the current re

mostly address the semantics and language levels, but that transport specification for

communication is still in a very preliminary stage.

1.2 OMG and MASIF

The Object Management Group’s first effort in the agent field resulted in the MA

specifications adopted in 1998. Formerly known as MAF (Mobile Agent Facilities, 1997),

"Mobile Agent System Interoperability Facilities" specifications [6] finally focused on defin

a conceptual framework, services and interfaces for CORBA-based interoperability bet

heterogeneous mobile agent platforms. The re-use of existing CORBA services (sec

naming service, life cycle and externalization templates) is also analysed by MASIF.

MASIF’s framework defines the concepts ofagent(eithermobileor stationary), hosted by

places, run byagent systems, belonging toregions. Two interfaces are defined:

• the MAFFinder interface defines operations for place, agent and agent systems loo

• the MAFAgentSystem interface deals with the management of an agent system

places and agents (creation, destruction, mobile agent migration).

There should be at least one server implementing the MAFFinder interface per region

each agent system should implement the MAFAgentSystem interface.

MASIF suffers from many weaknesses: How can regions be interconnected? How c

agent system receive an incoming agent of a different agent system type? How

heterogeneous agents communicate? Moreover, it appears that mobility makes the re

today’s CORBA services neither simple (e.g. naming), nor sufficient (e.g. security). Fin

although MASIF has been designed to take existing mobile agent platforms into accoun

fact that only one implementation is available today makes it impossible to assess the

support for interoperability. Nevertheless, MASIF has to be regarded as a first step, a

infrastructure and conceptual framework for further specification and revision.

After the MASIF experiment of the OMG in the agent field, the Agent Working Group w

created at the end of 1998 in order to provide OMG with a forum educating on agent techno

and to go further with the integration of agent technology to the OMG’s specifications, ta

into account agent standardization bodies such as FIPA.

1.3 FIPA

The Foundation for Intelligent Physical Agents was officially created and registered

non-profit association in 1996, and gathers 48 members from 13 countries in 1998. As sta
2

ed

en

"

on the

nd the

n the

with

BA’s

on the

ation

ted by

either

cility

lticast

rvices

tems,

oxes

ORB;

ble

SIF

lfil

agent

ilbox
the foreword of [4], its purpose is"to promote the success of emerging agent-bas

applications, services and equipment". Based on an international cooperation betwe

academic and industrial teams active in the agent field, FIPA aims to produce"specifications

that maximise interoperability across agent-based applications, services and equipment.

As far as agent communication is concerned, FIPA’s specifications are quite advanced

semantics and language levels. The former level is addressed by an effort on ontologies, a

latter by the adoption of the speech-act based Agent Communication Language (ACL). O

transport level, a minimal architecture makes use of an "Agent Communication Channel"

a one-method interface for message routing, and a recommendation to support COR

Internet Inter-Operability Protocol for inter-platform communications.

1.4 Middleware-based experiments

[2] summarizes several experiments that we carried out during the past seven years,

construction of agent platforms by adding middleware-based (mostly CORBA) communic

features to existing programming languages. In these platforms, agents are designa

chosen unique names in a naming service, and send messages to each other

synchronously or asynchronously through personal mailboxes. Thanks to a group fa

included in the communication middleware, messages may also be sent to groups in mu

or unicast modes. The PUMA platform [3] also achieves execution-safe agent mobility.

The most striking benefits of using a middleware such as CORBA is to reuse generic se

for distributed objects, and to hide heterogeneity concerns (networks, operating sys

programming languages). But it appeared that directly integrating communication mailb

into the agents had several drawbacks:

1. code for the mailbox has to be written for each programming language, and for each

2. since ORBs typically don’t manage mobility, there is no straightforward and fully relia

way to achieve transparent communications for mobile agents.

3 Which communications for which agents?

3.1 Problems with basic RPC-style communications

RPC-like communications are widely used in today’s agent platforms. The MA

specifications claim that RPC-like communications (e.g. CORBA, DCOM, Java RMI) fu

stationary agents’ needs. But is this model really suitable for agents? In fact, many multi-

systems, especially those featuring smart agents (DAI), assume the availability of a ma
3

g and

even

t, but

C-like

ming

g the

ted. Of

but it

s like

ces.

when

ories.

The

ure of

rest in a

ating

s of a

when

ecause

with

heavy

, and

stood

ard

MG

erns.
service. This simple communication model preserves every agent’s autonomy in readin

processing messages.

On the contrary, the direct use of RPC is a disturbance for the receiving agent. This is

worse for mobile agents, since on-going calls prevent it from moving (or sometimes do no

result in inconsistencies in the agent state). We see that if agents directly make use of RP

communications, many extra features should be envisaged in order to control the inco

calls. On the contrary, it is easy to imagine a stand-alone mailbox infrastructure allowin

receiving agent to be autonomous about the way an incoming message has to be trea

course, the communication between agents and this infrastructure is likely to use RPC,

may be hidden from the agent point of view, and, more than this, the infrastructure behave

a buffer isolating the communicating agents from each other, avoiding activity interferen

3.2 The "shared memory" approach

Several such communication infrastructure have already been designed. Typically,

agents don’t communicate by mail, they use more or less structured shared mem

Distributed blackboards, or the Linda interactor model [5] are such infrastructures.

approach of the JavaSpace specifications is quite similar in that it defines an infrastruct

servers, to manage the deposit and retrieval of message objects. Thus we see great inte

stand-alone (more or less distributed) communication infrastructure, isolating communic

agents. This is particularly relevant when the sender doesn’t know the actual reader

message/information. But isolating the senders and the receivers is also a good thing

agents are not permanently reachable, either because of network connectivity issues, or b

of mobility. These shared-memory approaches are very powerful in that they often come

causality, persistence, transaction features. But these interesting features often result in

specifications, complex to write and implement (JavaSpace is still in a specification phase

rely on other utilities that are just beginning to be specified), and not always easily under

by their users. Moreover, scalability is generally a problem.

4 A CORBA Mobile Agent Communication Transport Service

4.1 Why a MACTS?

The Mobile Agent Communication Transport Service aims at providing a stand

communication infrastructure for mobile agents. In the context of the MIAMI project, the O

MASIF standard is taken into consideration for mobile agent platforms management conc
4

ts. The

tem

MI

ages.

ded as

sts of

here

ture,

y be

e);

bility

run

sages

icated
But this standard defines nothing about communication between heterogeneous agen

MACTS adds a CORBA-based communication transport facility to the Mobile Agent Sys

Interoperability Facilities. Since FIPA specifications are also taken into account by the MIA

project, our infrastructure also intends to be suitable for the transport of FIPA’s ACL mess

Providing a stand-alone transport service for agent communication must also be regar

a continuation of our previous work (see section 1.4), with a step forward. This step consi

fully externalizing the communication system, which is used through CORBA interfaces. T

are several advantages:

• it allows development effort to be concentrated on the common, shared infrastruc

while lessening the work on the various agent platforms;

• an agent is not necessarily a CORBA object (but just a CORBA client), which ma

simpler for some agent platforms;

• it is not programming language dependent (unlike our C++ framework or JavaSpac

• it isolates communicating agents from each other, making it easier to handle mo

and any non-permanent network connectivity problems (the MACTS server should

on a "well-connected" machine).

4.2 Overview

The MACTS is a message transport layer providing a

mailbox-like service. To send and receive messages, an

agent needs to create amessage port, by invoking a

message port factory(figure 2). Basically, these

message ports are CORBA objects, that store incoming

messages.

Then, the default behaviour implies that the recipient agent checks for new mes

whenever it likes or can (figure 3). An agent may also create amessage port listenerand register

it on its message port. The listener is a CORBA object that implements an interface ded

to message reception. When a listener is registered, the message port switches fromstore mode

CORBA server
factory

agent

create new
message port

message port

figure 2: message port factory

B’s message
agent A

agent B

port

put message

forward message

message port listener

B’s message

agent A

agent B port

put message

get message

figure 3: message port in store mode figure 4: message port in forward mode
5

sage

hen

t), the

ce is

for

ssage

get

this

rant

fferent

its

pure

ically

takes

e agent

p the

IDL

res.

ical

these
to forward mode. This interface is invoked by the message port for each new incoming mes

(figure 4). As soon as a communication failure occurs when calling the listener (typically, w

the object reference of the listener is obsolete after it has moved along with the agen

message port automatically switches to store mode without losing any message.

4.3 Implementation and usage

The MACTS relies on four IDL interfaces:

• MsgPortUser is the message port interface for adding a new message - this interfa

used by the sender;

• MsgPortManager is the message port control interface, providing an operation

reading incoming messages, and operations for listener (de-)registration and me

port destruction - this interface is used by the owner of the message port;

• MsgPortListener must be implemented by a message port listener in order to

incoming messages on the fly - this interface is used by the message port;

• MsgPortFactory is the message port factory for creating new message ports -

interface is used by agents.

These stationary message ports provide a multi-purpose and mobility-tole

communication infrastructure for agents. An agent may have several messages ports in di

places in order to improve either communication performance or reliability. According to

specific constraints, the agent may choose two communication models: either a

asynchronous communication model, where the agent checks from time to time or period

its message port content (store mode), or a more "reactive" model where the agent

incoming messages into account as soon as possible (forward mode). In the latter case, th

will have to register the new reference of the listener after each move in order to kee

"reactive" behaviour.

5 High-level customization through personalities

5.1 What is a MACTS personality?

A personality aims at hiding from the programmer CORBA-related "burdens" such as

compilation coming with the MACTS, and providing higher-level communication featu

Moreover, a personality tries to show the genericity of the MACTS through various typ

agent communication cases. Of course, hiding tasks such as IDL compilation implies that

personalities rely on a given programming language.
6

rent

SIF

hanks

ating

in the

uested

teed to

s the

of the

vides

r on the

ode

or a

BA

vanced

more

ions
5.2 The “Mailbox personality”

The Mailbox personality is designed to use the MACTS infrastructure in a transpa

manner and provide a high-level mailbox system, featuring:

• a mailbox address scheme consistent with the region concept of MA

(agent_name@region_name), making it possible to communicate through regions t

to the federation of CORBA naming services;

• mobility-tolerant store and forward modes;

• unicast and multicast features in regions.

From the programmer point of view, using the mailbox personality is as simple as cre

an instance of Java class Mailbox, passing two strings as arguments (the agent name

region, and the region name), plus a uniqueness flag. This flag specifies whether the req

name should be unique in the requested region. If the flag is true, the address is guaran

be unique by the Mailbox system, and the Mailbox instance is a personal mailbox, with aunique

address.Otherwise, several Mailbox instances may have the samemultiple address, and form

a communication group in a given region with multicast (every member-mailbox receive

message) and unicast (an arbitrary member-mailbox receives the message) features.

For each Mailbox instance created, a MACTS message port is created in the factory

requested region, and registered in this region’s naming service. A Mailbox instance pro

methods to send asynchronous messages, and to get incoming messages on demand o

fly, as well as miscellaneous management methods:

• discard() destroys the mailbox’s associated MACTS message port;

• empty() destroys pending incoming messages;

• getAddress() returns current mailbox’s address;

• noListener() switches the mailbox to store mode;

• receive() reads the next pending incoming messages;

• send2all() andsend2one() send messages, respectively in multicast or unicast m

(only valid in case of "multiple" address recipients - any method may be used f

"unique" address recipient);

• setListener() switch the mailbox to forward mode.

Compared to the plain MACTS, the Mailbox personality hides IDL definitions and COR

object references and provides high-level addresses with predictable names, and ad

features such as multicast/unicast message sending. Moreover, the Mailbox offers

transparency to mobility by automatically "reconnecting" mailbox listeners, high-level vers
7

ceive

s, and

the

n the

ame

ame

erely

Using

th the

y.

ult

P is the

an

the

used

mong

ents.

the

tter

nly

ad the
of the message port listeners. This way, a mobile agent may move while continuing to re

messages, without blocking the senders during its migrations, without losing message

while keeping its consistency.

The Mailbox personality relies on a specific CORBA naming service usage federating

naming regions. This federation consists of running a naming service in each region (i

sense of MASIF), and binding a name context to each region name. If the region n

represents the local region, it is bound to a local region context which contains the n

bindings of the local mailboxes. If the region name represents a foreign region, then it is m

bound to the object reference of the actual naming context in the foreign name service.

this mechanism allows transparent inter-region communication. Merging this approach wi

MASIF specifications would result in region interconnection for management and mobilit

5.3 The FIPA personality

In the FIPA architecture [4], anAgent Communication Channel(ACC) routes messages

between agents from anAgent Platform(AP) to agents resident on other APs by using a defa

protocol among ACCs. The exchange of messages among agents residing on the same A

duty of theInternal Platform Message Transportlayer (IPMT), which is out of the scope of

FIPA specifications. The support of mobility in the context of FIPA requires

agent-interoperable communication transport service, which allows a mobile agent to:

• interact locally with other agents (ACC included) on the destination platform;

• receive incoming messages when moving without modifying its contents, on theHome

Agent Platform (HAP);

• receive and store incoming messages when it is provisionally disconnected from

network (e.g. on a mobile device).

The FIPA personality of the MACTS satisfies not only these requirements, but is also

as a means of communication supporting the IIOP protocol (recommended by FIPA) a

ACCs. Because of its genericity, the MACTS does not directly meet the needs of FIPA ag

Therefore, the FIPA personality is a Java package aimed at providing a solution to

communication concepts of FIPA’98: an agent’sGlobally Unique IDentifier(GUID) and

communication address, ACL message,letter object.

An agent must open aletter portto send and receive letters wrapping ACL messages. A le

object is composed of anenvelopeobject and an ACL message. The letter port analyses o

the content of the envelope for the message routing purpose, but is not required to re

content of the message (which may be encrypted for security reasons).
8

In the

of the

essage

and

ork, its

ges are

er to

n the

s not

ented

agent

age

protect

work

turing

were
The letter port is an intermediate between an agent and its message port (figure 5).

forward mode, the letter port receives a letter object from the agent, extracts the address

destination message port, converts to a stringified form and then sends that string to the m

port. On the destination side, the letter port builds a letter object from the forwarded string

passes it to the destination agent. When the agent moves or disconnects from the netw

letter port (and the associated message port) switches to the store mode. Incoming messa

immediately stored by the message port and then received by the agent on demand.

Note that the letter port automatically handles serialization and deserialization in ord

provide mobility transparency to mobile agent programmers.

6 Conclusion

In the context of the agent-technology emerging standards, this paper focused o

heterogeneous agent interoperability issue. It showed an interoperability level that i

covered in a satisfying manner today by standards such as MASIF and FIPA. Then, it pres

a CORBA-based transport service for agent communication, compatible with the mobile

paradigm by exhibiting a uniform, well specified and simple behaviour in mess

management. This service isolates the sender and the receiver of a message in order to

their autonomy and to handle properly the connectivity issues related to mobility and net

access. To illustrate the versatility of this service, a general-purpose mailbox system fea

advanced capabilities, as well as a FIPA’98 compliant communication architecture

figure 5: the FIPA personality of the MACTS

Agent A Agent B

LetterPortListener

A’s Letter Port B’s Letter Port

A’s
Message

Port

B’s
Message

Port

send letter

MsgPortUser

message()
MsgPortManager

MsgPortUser

MsgPortListener

receive
letter

receive()

message reception message reception
using forward mode using store mode
9

-related

. For

essary.

ment

e the

n

n

d),

f the

an

iami/
developed. These personalities show that several customized, easy-to-use, and agent

communication systems can be built on top of the MACTS.

Some more work has to be done about the management of the MACTS infrastructure

instance, some sort of garbage collection for unused message ports could be nec

Moreover, the fact that the Mailbox personality has been much more complex to imple

than the MACTS, makes us think about looking for extra generic features to enhanc

MACTS itself.

References

[1] Agents Working Group.Minutes of Meeting #1.OMG Joint Internet SIG & Electronic

Commerce Domain TF. Seattle, Washington, September 14-15, 1998.

[2] Bruno Dillenseger.From Interoperability to Cooperation: Building Intelligent Agents o

Middleware.Lecture Notes in Artificial Intelligence 1437 (Proc. of IATA’98), Sahi

Albayrak, Francisco J. Garijo Eds. Springer 1998, pp. 220-232.

[3] Bruno Dillenseger, François Bourdon.Supporting intelligent agents in a distributed

environment: a COOL-based approach.Proc. of "Technology of Object-Oriented

Languages and Systems", Versailles, France, 1995. Prentice Hall, pp. 235-246.

[4] FIPA 98 Specification.Foundation for Intelligent Physical Agents (Geneva, Switzerlan

1998.

[5] David Gelernter. Generative Communication in Linda.ACM Transactions on

Programming Languages and Systems, Vol. 7, No. 1, pp. 80-112 (January 1995)

[6] Mobile Agent System Interoperability Facilities.Object Management Group TC

Document orbos/97-10-05, November 10, 1997.

Acknowledgments

The work presented in this paper about the MACTS was carried out in the context o

MIAMI (Mobile Intelligent Agents for Managing the Information infrastructure) europe

project of the ACTS programme. Refer to http://www.fokus.gmd.de/research/cc/ima/m

for details.
10

	Towards full agent interoperability
	1 On agent interoperability and cooperation
	1.1 Introduction
	1.2 OMG and MASIF
	1.3 FIPA
	1.4 Middleware-based experiments

	3 Which communications for which agents?
	3.1 Problems with basic RPC-style communications
	3.2 The "shared memory" approach

	4 A CORBA Mobile Agent Communication Transport Service
	4.1 Why a MACTS?
	4.2 Overview
	4.3 Implementation and usage

	5 High-level customization through personalities
	5.1 What is a MACTS personality?
	5.2 The “Mailbox personality”
	5.3 The FIPA personality

	6 Conclusion

