
ated
ears,
h as
ent
y
tinct
t
ation

a
ing

the

lem

we
From Interoperability to Cooperation: Building
Intelligent Agents on Middleware.

Bruno Dillenseger
CNET, BP 98, F-38243 Meylan cedex, france

bruno.dillenseger@cnet.francetelecom.fr

Abstract. As agent technologies are increasingly being involved in
telecommunication-related applications, the need for open standards is becoming
critical. During the past years, different scientific communities gave birth to
different standardization actions, such as the Foundation for Physical Intelligent
Agents (FIPA) and the Object Management Group’s MASIF (Mobile Agent
System Interoperability Facilities). Although they finally share some major
targets, the OMG and FIPA current results show their distinct origins,
respectively with a Distributed Artificial Intelligence and Multi-Agent Systems
awareness on the one hand, and a telecommunication and information
technologies background on the other hand. In a context where these two actions
think about joining their achievements to upgrade each other, this article reports
several experiments, carried out during the five past years in the agent platforms
field, mixing both the intelligence and the middleware aspects.

1 Context

1.1 The Story

As agent technologies are increasingly being involved in telecommunication-rel
applications, the need for open standards is becoming critical. During the past y
different scientific communities gave birth to different standardization actions, suc
the Foundation for Intelligent Physical Agents (FIPA) and the Object Managem
Group’s MASIF (Mobile Agent System Interoperability Facility). Although the
finally share some major targets, the OMG and FIPA current results show their dis
origins, respectively with a Distributed Artificial Intelligence (DAI) and Multi-Agen
Systems awareness on the one hand, and a telecommunication and inform
technologies background on the other hand.

Reporting our work in this context is a sort of historical counterfeiting, but is
striking way of explaining and justifying a hybrid approach that we have been carry
on for more than five years. In fact, we were inspired by several needs:

– a middleware to fit the distributed applications requirements (typically in
Computer Supported Cooperative Work and groupware fields);

– a higher level layer to support knowledge representation, distributed prob
solving, cooperation…

As a result, we got involved in both the middleware and the DAI communities, and
started to mix their techniques.



he
ems

s.
ed
/IP
e.g.
t
,

neity
just
nd
tion.
more
g a
rms,

AI
day.
tion
bile

us,

;

ers,
s a

, and
uages-

sed

ific
rms,
1.2 Multi-Agent Platforms

Many multi-agent platforms offer modelling and implementation solutions to t
distribution of intelligence. To a certain extent, one may consider multi-expert syst
and Distributed Artificial Intelligence as parts of the origins of the multi-agent system
Following this point of view, we can see through the introduction, in typical centraliz
Artificial Intelligence languages, of low-level communication features (e.g. TCP
sockets in Lisp or Prolog), or more elaborate communication structures (
blackboards andLinda Interactor in [20]), the emergence of the first multi-agen
platforms. Then, sophisticated models (actors [1]) and techniques (constraints
reflexivity [10]) have been merged to enhance multi-agent platforms.

But, as the enhancements are going on, the resulting diversity and heteroge
makes it difficult for a standard to emerge, besides the AI classics, which industry is
beginning to appropriate to itself. Moreover, when it comes to distribution a
communication, specific solutions are often applied, sometimes through simula
But, the more these platforms integrate to standards, in real applications, the
striking is the proof of their accuracy. Then, it seems useful to find a way of definin
standards-based bridge between the real applications and multi-agent platfo
without preventing their evolutions, but enforcing reusability and interoperability.

1.3 Mobile Agents Platforms

Whereas Sect. 1.2 was dealing with multi-agent platforms springing from the D
community, another type of agent platform is becoming more and more popular to
These platforms deal with mobile agents, and come with a strong telecommunica
and information technology background. What can be called more generally “mo
computing” addresses various issues:

– access and locally process (so-calledremote programming) big amounts of
distributed information (e.g. distributed data mining);

– the active networks field, which aims at providing networks with autonomo
intelligent and dynamic setup features;

– management and access to distributed services and electronic marketplaces
– load balancing and fault tolerance.

First introduced by General Magic’s Telescript for electronic commerce matt
mobile agents technology now benefits from the popularity of Java, which bring
precious transparency to heterogeneity. As a result, most of these platforms1 consist in
Java packages, offering an Agent class with communication and mobility features
more or less sophisticated architectures and services. There also exists other lang
based platforms, such as Agent/TCL [8] (now calledD’agent, as it will support other
languages than just TCL in a near future), or hybrid platforms (e.g. the Tube [9], ba
on a Scheme interpreter written in Java).

The mobile agent community is very involved in security matters, as it is a spec
and critical issue. Interoperability support between heterogeneous agent platfo

1 IBM’s Aglets, General Magic’sOdyssey, IKV++’s Grasshopper, ObjectSpace’sVoyager, The
Open Group’sMOA, Mitsubishi’sConcordia, Fujitsu’sKafka…



t the
ing a

pen
g a
, such

IEC,
al
DP
ise,
M-
g

s in
e by
989,
stry

y the
ards

f the

res
BA
m
ices.
ent

BA

ge

the
agents, and the need for intelligence are still needed, but nothing really exists a
present time. In this context, the FIPA and OMG standards are interested in play
key-role to provide agents with interoperability and cooperation abilities.

1.4 Object-Oriented Communication Architectures

Operating systems, or layers between them and applications (middleware), increasingly
integrate distribution and communication features. Standards from ODP (O
Distributed Processing) and OMG (Object Management Group) aim at designin
standard system environment which transparently cope with open systems issues
as heterogeneity, interoperability, portability, distribution.

ODP brings a set of standards springing from independent organisations: ISO,
ITU-T, AFNOR… The Reference Model (RM-ODP) [12] provides a conceptu
framework for specifying an open distributed architecture. One key-point of RM-O
is the use of five specification languages, bound to five points of view: enterpr
information, computation, engineering, technology. Strongly object-oriented, R
ODP’s concepts aim at improving interoperability and portability, while makin
distribution and heterogeneity transparent.

To a certain extent, the OMG’s approach is more pragmatic, as it consist
building an open and non-proprietary object-oriented communication architectur
standardizing available technologies. Since its foundation by 11 organizations in 1
the OMG gathered more than 500 members, among the main computing indu
vendors. The CORBA standard [17] is being permanently refined and extended b
OMG, and several commercial implementations are available. The OMG’s stand
specify:

– an object-oriented model (Core Object Model);
– a reference architecture for objects management, based on the definition o

Object Request Broker;
– aCommon Object Request Broker Architecture (CORBA);
– interfaces to generic objects and services:Common Object Services(e.g. naming

service, event service),Common Facilities…

1.5 Our Approach

Object-oriented distributed systems come with communication architectu
supporting generic functions related to distribution. A middleware such as COR
gives agent platforms an actual distribution facility, while abstracting fro
heterogeneity and relying on basic communication primitives and common serv
Moreover, the integration of intelligent agents to CORBA could lead to new intellig
common services, and bring advanced solutions to generic issues of COR
applications.

Thus, an agent platform based on a standard communication layer:
– can concentrate on its specific jobs (information finding, knowled

representation, problem solving, cooperation…);
– is likely to benefit from, as well as to enrich, the applications and services of

environment it integrates to;



ional
nd
ns
nt is
or
(for
n so
t
and

s
ct-
nded
ased

ing
and
oal.
olog
iour:
tion,
agent
for

with
ts for

safe
for

t to
L,
ere
ith
s that
rnel
the
bal
s).
– builds thebridge we deal with in Sect. 1.2.

Today, some on-going work in theagent communityand the OMG tends to encourage
such a bridge. FIPA, for instance, underlines that “agents need to be able to integrate
with, and where appropriate use for themselves, existing and emerging computat
infrastructure. Examples include: TCP/IP networking, CORBA, TINA-C, http a
OLE.” [4]. As far as the OMG is concerned, the MASIF [16] include a set of definitio
and interface specifications related to agents systems interoperability. An age
described as“a computer program that acts autonomously on behalf of a person
organization. Most agents today are programmed in an interpreted language
example, Tcl and Java) for portability. Each agent has its own thread of executio
that it can perform tasks on its own initiative”. As we’ll see in this article, these two las
sentences have also something to do with our work (cf. “interpreted language”
“thread of execution”).

2 The First Experiments

2.1 PUMA, the Forerunner

PUMA (Prolog Upgrade for Multi-Agent world) is our first experiment [5]. It result
from the integration of a Prolog interpreter in a C++ object of the COOLv1 obje
oriented communication layer [14]. The Prolog kernel and dialect have been exte
to integrate COOL-based communication primitives: message and mailbox b
communication, including group features, local synchronous communication, nam
service, mobility, COOL object creation. Each agent has its own thread of activity,
can explicitly move and transparently resume its activity at the next programme g

PUMA have been enriched with many C++ development classes and Pr
modules allowing the incremental and modular composition of the agent’s behav
activity step, cooperation structures and protocols, knowledge representa
specialised services… The system has been used to implement a distributed multi-
application for meeting-rooms booking, accordingly to a multi-agent approach
office information systems [6]. Cooperation was based on communication groups
specific management and invocation protocols, dynamically created mobile agen
sub-contracted tasks, and constraints-based negotiation.

The dynamic, modular and declarative programming of agents, the activity-
mobility, the constraints-based negotiation language, the group organization
cooperation, but also the quick prototyping opportunity, are the key-points brough
light by the PUMA experiment. Its career was interrupted by a big evolution of COO
which evolved towards a CORBA conformance. However, other experiments w
necessary, not only to follow this evolution, but also to try other combinations w
other interpreted languages. Another practical aspect about the interpreter kernel i
the integration we did in PUMA needed much development time on the Prolog ke
source code, not only to add new primitives, but also to encapsulate it (break
interpreter loop and build a control function, extract and encapsulate the glo
variables to create several independent Prolog objects in a multi-threaded proces



yer
ties
an

ity,
like
A
s of
ch as

A
rnel

This
any
gents
tion
nd

high-
no

traints
erly

in
.

ming
ns)
(cf.
d
A.
e a
to

n.
r the

s. Not
vel
ient.
grate

ted
ion.
2.2 The Successors

The immediate successors to PUMA followed the evolutions of COOL. This la
gained more and more distance from the underlying micro-kernel specifici
(Chorus), and progressively became CORBA compliant. COOLv2 figures
intermediate state, mixing typical COOL features (persistence, mobil
communication groups, activity and concurrency management) with a CORBA-
architecture. COOL-ORB [3], the latest evolution, comes with a fully CORB
compliant platform. Beyond the middleware concerns, we also tried different kind
integration of other logics-based interpreted languages, featuring extensions su
constraints.

Compared to PUMA, ROZACE (Remote execution server for OZ Agent in CORB
Environment) figures a complementary approach [15], by keeping the interpreter ke
apart from the agent and making it available as a script execution server.
architecture illustrates the case of a really big interpreter kernel, which offers m
powerful features, but needs a large amount of computing resources. As a result, a
arelight, but can perform advanced tasks by submitting scripts to the remote execu
server2, either synchronously or asynchronously. ROZACE was built on COOLv2 a
Oz [19], an interpreted language that combines the logic, constraints, concurrent,
order functional and object-oriented programming paradigms. Unlike PUMA,
primitive has been added to the language, and scripts are pure Oz. The Oz cons
features have been applied to a few parts of the room booking application form
developed with PUMA.

CHOCOLAT (CHorus COol & Life Agents Tool) [11] has been developed
parallel with ROZACE, to explore a PUMA-like integration on COOLv2 (i.e
integrated interpreter, extended dialect), but relying on an extended logic program
language. Derived from Prolog, LIFE (Logic, Inheritance, Functions and Equatio
offers functional programming, concurrency and constraints features, with types
sorted logics) and inheritance [2]. The quality of LIFE’s C language interface allowe
a quick integration, with fewer source transformation than in the case of PUM
Thanks to the underlying COOLv2 middleware, it has been possible to introduc
dynamic invocation mechanism, allowing the CHOCOLAT’s interpreted kernel
invoke any method on any COOLv2 object, with no preliminary link editio
CHOCOLAT has been used to implement a representation and revision model fo
beliefs of agents [18].

2.3 Conclusion

These experiments taught us some tips about middleware-based agent platform
wanting to start from scratch, most of the work often consisted in adapting high-le
interpreted languages from the source code, which is not convenient, neither effic
In fact, we realized that very few such languages are designed as ready-to-inte
components.

2 In fact, this approach can be mixed with PUMA’s: a small interpreter kernel may be integra
in the agent to implement a minimal autonomous behaviour and knowledge representat



ding,
o be

and
tters.
gent

ent
at the
utual
an be

g
tion
is

et

onize
ng,
ing
To

d is
orld,

ible
d a
C
urce
ork.

esult,

ion

e, in
n

As far as the agent primitives are concerned, those dealing with message sen
mailbox management and address publication (cf. naming service) appear t
essential and straightforward to implement. Group features, including broadcasting
functional sending, are of great interest for agents organization and cooperation ma
The dynamic creation of agents is also very useful, as it makes it possible for an a
to sub-contract a task to an autonomous extra activity.

Synchronous communication, which typically consists in having another ag
executing a script in a synchronous way, generally causes concurrency problems
embedded interpreter kernel level. As a result, this kernel has to be protected by m
exclusion, which causes a deadlock in case of cyclic synchronous calls. So, this c
a convenient feature, but it must be used very carefully.

The main difficulty springs from mobility. PUMA was the only platform supportin
a transparent agent state and activity mobility feature. It relied on COOLv1’s migra
feature and on Prolog’ssave/1 predicate, which creates a complete state file. But th
mobility was limited to homogeneous environments.

3 Building a Multi-Agent Application on CORBA

3.1 What is “CIDRIA Générique”?

CIDRIA Générique is a generic workflow system, built on CORBA and intran
technologies, according to a multi-agent model [7].Workflow systems consist in
executing predefined or on-line generated scenarios, in order to trigger and synchr
a set of tasks in the information system, while achieving information gatheri
circulation and tracing. CIDRIA Générique aims at managing procedures combin
any kind of service, involving any type of resource: software, hardware, users…
cope with this real world heterogeneity, a homogeneous multi-agent virtual worl
created by mapping each resource to a dedicated agent. Inside the multi-agent w
resources are represented by theirskills, and theycooperatevia service requests
accordingly to these skills.

3.2 The Multi-Agent Platform

While making CIDRIA Générique, we wanted to produce as reusable as poss
developments. We chose an on-the-shelf CORBA compliant middleware, an
Edinburgh-type Prolog interpreter (SWI-Prolog [21]). The high quality of its
interface made it possible for us to embed it in a C++ class without modifying the so
code. This way, any interpreter or middleware update has a minor impact on our w
This class has been used to integrate a Prolog kernel in a CORBA server. As a r
we could implement every server operation in Prolog, through the C++mapping3. This
integration is minimal, as we didn’t extend the Prolog dialect with communicat

3 A CORBA server interface is declared independently from the implementation languag
IDL (Interface Definition Language). Applying this abstract definition to a give
programming language, to make server or client software, needs a specificmapping.



re, for
Prolog
g (no
gents

t of
lly

es the
uce
sible

ver
er;
d).
log
idn’t
ER,
elay

ted
gent
ent

by
BA

run

ccurs

a Sun
her
log.
primitives. In current version, agents are concentrated on the same server, and sha
practical reasons (e.g. persistence, resources mobility transparency), the same
kernel. Nevertheless, agents cooperate and communicate via message handlin
shared memory is used), and the architecture is ready to be extended with actual a
distribution, with several servers.

3.3 Conclusion

Built following modularity and reusability principles, CIDRIA Générique fits
evolution. When developing and maintaining it, we really appreciated the comfor
Prolog programming, propitious to quick prototyping. As the agents are fu
represented in Prolog, saving their states as a set of Prolog clauses fully describ
overall system. We used this opportunity for debugging, and also to introd
persistence features. Moreover, the Prolog declarative programming makes it pos
to dynamically modify the operations implementation, without interrupting the ser
functioning. One just have to modify a Prolog file, and “reconsult” it from the serv
the agents’ behaviour is updated while their states are not affected (unless desire

From a performance point of view, one could believe that the CORBA+Pro
association is too heavy, but it doesn’t appeared to be the case. Although we d
perform any load test, demonstrations made through the french network RENAT
between Paris (INRIA) and Caen (CNET), didn’t reveal any particular response d
when invoking the server’s operations; i.e. it looked like a local application4.

To conclude, if our previous experiments tend to prove that object-orien
middlewares can bring an accurate solution to the communication needs of a
platforms, CIDRIA Générique legitimates the use of a CORBA-based multi-ag
approach for the conception and implementation of distributed applications.

4 Recent Work

4.1 An “Interpreter” CORBA Interface

In order to extract the generic aspects of developing multi-agent platforms
integrating interpreted languages to CORBA, we have defined an “interpreter” COR
interface, namedInterp . It specifies two operations:

– execute(in string script, out string result) makes the server
object executescript  and give theresult  of the execution;

– receive(in string message) makes the server object addmessage to its
mailbox. No message format is specified. It may consist of a script to
asynchronously, or any kind of data.

Messages, scripts and results are generically represented by strings. If a problem o
during a call, these operations raise an exception. There are 4 exceptions:

4 The client machine was a portable PC running Windows 95, and the server machine was
UltraSparc 1 with 64 Mo of RAM, and wasn’t dedicated to the demonstration (it run ot
server processes). Client software is written in Java, and server software in C++ and Pro



of a

er

no

on
.
s in a
r
eeds
early

with

will
age;
ed

ment,
ent)

and
ocess

s, or

ror

ould

h a

bjects.
– FULL_MAILBOX indicates that the message couldn’t be added to the mailbox;
– SCRIPT_ERRORmeans that the script couldn’t be properly executed, because

syntax or execution error;
– NOT_IMPLEMENTEDis raised when the operation isn’t available in the serv

object;
– _UNKNOWNinforms that the operation couldn’t be performed, but provides

diagnostic.

4.2 A Generic ORB Class

As we were to extend an interpreted dialect with communication primitives based
the middleware, accordingly to theInterp interface, we decided to generically (i.e
independently from the actual interpreted language) encapsulate these primitive
C++ class, namedGeneric . We call it Generic because it isolates the interprete
kernel from the actual middleware. But this class is middleware dependent, and n
to be adapted from one middleware to another. Nevertheless, adaptation is cl
straightforward between CORBA compliant platforms5.

Public methods of theGeneric  class include:
– initialization and destruction methods, which manage, among others, the link

the underlying ORB (e.g. access to the naming service, the group service…);
– two pure virtual methods6, run() and call() , respectively representing an

interactive interpreter loop, and a script execution method. These methods
have to be implemented when deriving the class for a given interpreted langu

– generic communication primitives, which are likely to extend the embedd
interpreted language: naming service, message sending, mailbox manage
communication groups, synchronous remote script execution, object (ag
creation;

– two methods implementing theInterp  operations (see Sect. 4.1).

4.3 ORB-fying an Interpreter Component

Theory. Suppose we find a C++ class interpreter component, that we can derive,
that makes it possible to create several objects in the same multi-threaded pr
(typically one object and one thread per agent). This class also provides:

– a way to add primitives, by adding or overriding one or several methods;
– facilities to handle the entities of the embedded language (e.g. Prolog term

Lisp expressions);
– methods for external interpreter loop control and script execution, with er

handling;

5 Group communication primitives are specific to the ORB we chose (COOL-ORB), and sh
be implemented on other CORBA platforms via specific servers.

6 A pure virtual method consists in a method declaration without implementation. Suc
method can be called, but the class it belongs to isabstract, i.e. it cannot be instantiated. This
class has to be derived so as to actually define the method, and thus be able to create o



the
cript

o do
gent
and

lity.

ur
r

poor
bal
nels
reter
es,

ble,

tion
will

dy-

o an
ool.
each

ware
uage

sed
thods
the
– conversion methods between the string and internal representations of
language entities, which really helps write the message sending and s
execution primitives.

Provided the fact that we find this ideal component, the integration task is easy t
through multiple inheritance, as shown by Fig. 1, and we get a CORBA-based a
platform. The port to another communication layer just involves the Generic class,
the port to another operating system is really minimal, while achieving interoperabi

Practice.Confrontation to reality rapidly destroys this dream. According to o
investigations, “AMZI! Prolog + Logic Server” is the only available interprete
component which matches our main requirements. Most of the others come with
C interfaces which really turns the integration task into a nightmare. Obviously, glo
and static variables forbid multi-threading and multiple independent interpreter ker
in the same process. The worst C interfaces keep the main activity in the interp
loop, which makes it very hard to implement a synchronous call primitive. Sometim
the string conversion functions for the language entities aren’t directly availa
whereas they always exist in some form in any interpreter.

Finally, we decided to build by ourselves the libraries and their C++ encapsula
from existing interpreter C sources. We believe that on-the-shelf C++ components
be soon available, following AMZI! Prolog, Ilog products, or a fewextension
languages7 way. Then, we’ll just have to change our adapted kernels for these rea
to-integrate components.

7 The extension language principle consists in integrating an interpreted language int
application in order to provide users with a powerful configuration and customization t
Choosing a standard language prevents users from learning a new language for
application. The Emacs Lisp and the Guile extension language, from the Free Soft
Foundation, illustrate this idea. Elk (see Sect. 4.5) is another example of extension lang
which shows Scheme’s popularity.

Generic class Interpreter class

ORBfiedInterpreter class

generic methods for
ORB-based communication

run() and call() methods
language structures handling methods

method(s) adding new primitives to the embedded interpreted language

Fig. 1.The ORBfiedInterpreter class defines new primitives based on the inherited ORB-ba
communication methods (Generic class) and interpreted language structures handling me
(Interpreter class). The Interpreter class must define two specific methods to complete
Generic class’ implementation (run() and call()).

inherits frominherits from

rely on



gh
C++
he

rolog
to a
the

to

(see

s for

f

reter
ripts).
eir

rvice
ronous
r two
4.4 A Prolog Integration: BPorb

BinProlog is an Edinburgh-style Prolog implementation [20]. It is famous for its hi
performance, and the C source code is available at a low price academic licence. Its
encapsulation has been very tricky, for its C interface really didn’t fit our needs. T
result is interesting, however, as we succeeded in overcoming the fact that BinP
keeps the main activity in its own interpreter loop. This was achieved thanks
BinProlog primitive which creates a new engine to solve a goal, without destroying
current goal.

The resultingBinProlog class mainly supplies thecall() andrun() methods,
and anextension() virtual method. This method is invoked by the Prolog kernel
implement thenew_builtin/3 predicate. Thenew_builtin(+code, +in, ?out) goal is mapped to a
call toextension(code, in, out) , wherecode figures a primitive number. A null
return value fromextension()  means a goal failure.

Once this encapsulation is done, the final step consists in defining theBPorb class,
which inherits from Generic and BinProlog . The extension() method is
overriden, to map the communication primitives provided byGeneric to the Prolog
dialect, via thenew_builtin/3 predicate.

4.5 A Scheme Integration: ElkOrb

Elk [13] is a free Scheme implementation, specially designed to be embedded
extension language, note 7). Its C++ encapsulation resulted in two classes:

– theElkObject class encapsulates the Scheme entities, with handling method
every type;

– the Elk  class encapsulates the language engine.

TheElk class mainly defines thecall() andrun() methods, required by the use o
theGeneric class.Elk also defines anextension() method, which is called when
evaluating the(new-primitive arg1 arg2 …) expression. Theextension() method takes a
vector ofElkObject objects (arg1, arg2…) as an argument, and returns anElkObject

object, which represents the evaluation result.
Once this encapsulation is done, theElkOrb class is obtained by inheriting from

Generic andElk . ElkOrb overrides theextension() method to make the Generic
communication primitives reachable from the Elk kernel.

4.6 Observations

TheElkOrb andBPorb classes have been used to create slave or interactive interp
objects (slaves permanently look for incoming messages and execute them as sc
At initialization time, these objects load a Scheme or Prolog file which contains th
behaviours. They consist in CORBA server objects, registered in the naming se
under chosen names which represent their addresses for messages and synch
calls. Each communication group is also registered in the naming service, but unde
names: one for message broadcasting, the other forfunctional(i.e. an arbitrary member
of the group receives the message) synchronous or asynchronous calls.



main
tring

ter-
but

uted
non-

with

nd

ion
ting

s,
jects,
ast
reter

the
F
level

ast
As a
ion

uno
in
of

ories.
Since communication primitives are based on theInterp CORBA interface, it is
possible for different interpreted languages, integrated to CORBA via theGeneric

class, to communicate asynchronously or synchronously with each other. The
issue is to build a script for another language, and then to extract the result, via a s
representation. It could be interesting to look at Xerox’s ILU approach. The In
Language Unification platform formerly aimed at inter-language interoperability,
then took distribution into account, and finally offers a CORBA hook.

5 Conclusion

The experiments we have reported aim at proposing a bridge between distrib
applications and multi-agent platforms, based on the adoption of a standard and
proprietary middleware, CORBA. The reasons for such an approach are:

– CORBA platforms, services and distributed applications can be enhanced
intelligent features;

– Distributed Artificial Intelligence techniques may find a concrete investigation a
application field;

– agent platforms may abstract themselves from the low-level distribut
management primitives (basic communication, CORBA services), while adop
a standard communication architecture, propitious to their interoperability.

We have integrated typical Artificial Intelligence languages to CORBA platform
either as remote execution servers, or by embedding an interpreter kernel in the ob
and extending its dialect with CORBA-based communication primitives. The l
experiment resulted in extracting some generic features, thus isolating the interp
part from the CORBA communicating part.

With the recent outcome of FIPA’s and OMG’s actions, and the will to combine
former’s ACL (Agent Communication Language) with the latter’s MASI
specifications, our experiments could be regarded as a way of combining a high-
approach with a middleware support.

Our further work will focus on agent mobility, OMG’s and FIPA’s work, CORBA
services and facilities, and CIDRIA générique’s evolution (integration of our l
results, extensions with actual distribution and agent communication protocols).
matter of fact, this application will be our privileged integration and demonstrat
platform for truly standards-based mobile intelligent agents.

Acknowledgements

The work reported in this paper was carried out in the CNET8 lab in Caen, by
Christophe Trompette, Emmanuel Hym, Eric Malville, Stéphane Piolain, and Br
Dillenseger, under the responsibility of François Bourdon and Anne Lille,
collaboration with Patrice Enjalbert and Jurek Karczmarczuk from the University
Caen.

8  “Centre National d’Etudes des Télécommunications”, France Télécom research laborat



s

ante.

ur les

7),

es
I

e

C

d

la

for
any

f

References
1. Gul Agha.Actors, a Model of Concurrent Computation in Distributed Systems.MIT Press

(1988).
2. Hassan Aït-Kaci, Bruno Dumant, Richard Meyer, Andreas Podelski, Peter Van Roy.The

Wild LIFE Handbook (prepublication edition). Digital Paris Research Laboratory (1994).
3. Chorus / COOL-ORB Programmer’s Guide.Documentation CS/TR-96-2.2, Chorus System

(1997).
4. Ian Dickinson. nyrequirements. FIPA document notes, Yorktown (September 28th 1996).
5. Bruno Dillenseger, François Bourdon.Supporting Intelligent Agents in a Distributed

Environment: a COOL-based Approach. TOOLS 16, Prentice Hall (1995) 235–246.
6. Bruno Dillenseger.Une approche multi-agents des systèmes de bureautique communic

Thèse de Doctorat, Université de Caen (1996).
7. Bruno Dillenseger, François Bourdon.Modélisation de la coopération et de la

synchronisation dans les systèmes d’information (une expérience de workflow basée s
nouvelles technologies). Calculateurs Parallèles Vol. 9, No 2, HERMES (1997) 183–207.

8. Robert Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cybenko.Mobile agents:
The next generation in distributed computing.In Proceedings of the Second Aizu
International Symposium on Parallel Algorithms/Architectures Synthesis (pAs ‘9
Fukushima, Japan. IEEE Computer Society Press (1997) 8–24.

9. Dave Halls.Applying Mobile Code to Distributed Systems.Doctoral Dissertation Computer
Laboratory University of Cambridge (1997).

10. Salima Hassas.GMAL - Un modèle d’acteurs réflexif pour la conception de systèm
d’intelligence artificielle distribuée.Thèse de doctorat, Université Claude Bernard - Lyon
(1993).

11. Emmanuel Hym.Intégration et mise en œuvre d’un langage interprété sur la plate-form
répartie à objets Chorus/COOLv2. Rapport de DEA, Université de Caen (1995).

12. ISO, ITU.Reference Model of Open Distributed Processing.ISO standard 10746, ITU-T
recommandations X.900 (1995).

13. Oliver Laumann, Carsten Bormann.Elk: the Extension Language Kit.Technische
Universität Berlin / Universität Bremen, Germany (1996).

14. Roger Lea, Christian Jacquemot, Eric Pillevesse.COOL: System Support for Distributed
Programming. Communications of the ACM, Vol. 36, No 9 (1993).

15. Eric Malville.Etude d’une architecture agent sur la plate-forme Chorus/COOLv2.Rapport
de DEA, Université de Caen (1995).

16. Mobile Agent System Interoperability Facilities Specification.Joint submision: GMD Fokus
& IBM Corp., supported by Crystaliz Inc., General Magic Inc., The Open Group. OMG T
document orbos/97-10-05 (1997).

17. Object Management Group.The common Object Request Broker: Architecture an
Specification (revision 2.0). OMG (1995).

18. Stéphane Piolain.Expérimentation de l’approche Programmation Logique Etendue pour
réalisation d’agents nomades sur Systèmes Répartis à Objets.Rapport de stage de DEA,
Université de Caen (1996).

19. Gert Smolka.An Oz Primer.DFKI Oz documentation series, German Research Center
Artificial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germ
(1994).

20. Paul Tarau.Bin Prolog 5.75 User Guide.Département d’Informatique, Université de
Moncton, Canada (1997).

21. Jan Wielemaker.SWI-Prolog 2.5.Dept. of Social Science Informatics (SWI), University o
Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands (1996).


	1 Context
	1.1 The Story
	1.2 Multi-Agent Platforms
	1.3 Mobile Agents Platforms
	1.4 Object-Oriented Communication Architectures
	1.5 Our Approach

	2 The First Experiments
	2.1 PUMA, the Forerunner
	2.2 The Successors
	2.3 Conclusion

	3 Building a Multi-Agent Application on CORBA
	3.1 What is “CIDRIA Générique”?
	3.2 The Multi-Agent Platform
	3.3 Conclusion

	4 Recent Work
	4.1 An “Interpreter” CORBA Interface
	4.2 A Generic ORB Class
	4.3 ORB-fying an Interpreter Component
	Theory
	Practice

	4.4 A Prolog Integration: BPorb
	4.5 A Scheme Integration: ElkOrb
	4.6 Observations

	5 Conclusion
	Acknowledgements
	References

