
Abstract
In the context of advanced telecommunication service
execution environments, this paper presents a reactive mobile
agent platform, based on a synchronous programming model,
a flexible object request broker, and OMG's MASIF
specifications on mobile agent systems interoperability. The
paper details the specific design of the platform, and shows
how it addresses key issues such as scalability, reliability,
transparent mobility, and interoperability. Finally, the paper
explains how telecommunication service execution
environments may benefit from these advanced features.

1. Introduction
In the context of advanced telecommunication

services, we present a Java mobile agent platform that
meets several critical requirements of service execution
environments. As of today's research topics, involving
(mobile and/or intelligent) agent technology in
telecommunication infrastructure is a well-known trend
(e.g. see a digest of several European projects in
[INF 99]).

As far as mobility is concerned, application to
optimization of processing and network resources
consumption, as well as resistance to non-persistent
network connectivity have been already put into light
and experienced. Nevertheless, mobile agent technology
often comes with several specific drawbacks, such as
bad scalability, cost and complexity of agent activity
transportation, unreliable agent communication and lack
of interoperability between heterogeneous platforms.
The specific design of our platform is motivated by
these considerations.

Moorea is a Java mobile agent platform
implementing the Mobile Agent System Interoperability
Facilities specification [OMG 97]. It comes with a
peculiar reactive model for agent communication and
activity, enhanced with distribution support and
transparent mobility features. This paper first describes
the Moorea platform, details its specific properties and
compares them to existing platforms. Then, the paper
gives an overview of the upcoming application of
Moorea in the field of telecommunication service
execution environments.

2. Moorea Overview

2.1 Moorea Architecture
Moorea ("MObile Objects, REactive Agents") is a

100% Java reactive mobile agent platform. As shown by
figure 1, its architecture combines:

• a reactive object kernel (Junior [HAZ 99]) and a
reactive language (Rhum, derived from the Esterel
synchronous programming language [BER 92]) with
Java environment and distribution support,

• with a Java mobile object framework (SMI
[DIL 00]) implementing OMG's Mobile Agent
System Interoperability Facilities specification
[OMG 97] (also known as Mobile Agent Facilities),

• on top of a flexible Object Request Broker
(Jonathan [OBJ 00]) offering both a Java-RMI and a
CORBA personality (API);

• transparency to mobility support has been added to
Jonathan, Jeremie and Rhum layers.
On the one hand, this Java, CORBA and MASIF

based approach is relevant to hardware and operating
system independence, as well as portability and
interoperability enforcement at various levels (ORB
architecture, standard IDL-defined interfaces, common
conceptual framework). On the other hand, the mapping
of the reactive object model [BOU 96] to mobile agents
is suited to providing an efficient, reliable and scalable
environment for service development and execution.

figure 1 : Moorea's software architecture
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2.2 Key Concepts

2.2.1 Reactive Agent, Agent Reference
Agent activity is fully defined by a reactive behavior

specification in a dedicated programming language
called Rhum (see section 2.2.3), and a passive Java
object whose methods are invoked by the reactive
behavior to perform basic computations. The reactive
behavior is compiled into a Java reactive object,
embedding the associated passive object (see figure 2).

figure 2 : structure and programming flow of a Moorea
agent.

Agents are designated by their reactive reference (or
Moorea object reference), which may be used for
managing them or for sending them events, in a
distributed way.

2.2.2 Synchronous Execution and Instants
Moorea's specific reactive model derives from

synchronous programming (e.g. Esterel [BER 92]). In
such a model, the execution time is sliced into logical
instants, which define the lifetime of an event and the
reaction semantics (figure 3): (1) an event is present
during an instant if and only if it is generated during this
instant; (2) reactions to an event are run in the same
instant; (3) an event may trigger reactions only once per
instant, whatever the number of times the event has
been generated in this instant. An instant ends once all
reactions are terminated or stopped. A reaction stops by
waiting an event which is not present in the instant, or
by explicitly waiting next instant.

figure 3 : execution is split in instants where agents react
to and generate events.

2.2.3 Reactive Synchronous Language Rhum
A Rhum program defines parallel branches,

synchronization, loops, event generation and event
waiting (see example in figure 4). Derived from
synchronous language Esterel [BER 92], Rhum
modifies the semantics to avoid causality problems and
to allow dynamic program composition [BOU 96].

figure 4 : this Rhum program defines a loop on two
parallel branches, whose execution results in calling on
the passive object method say_hello() first and then
method say_world(). This order is enforced by ad hoc
generation and waiting of events hello and world.
Note that without the stop instruction, the program
would endlessly loop in a unique, never-ending instant.
Here, each loop takes one instant. The program exits at
the end of an instant when event quit is present.

2.2.4 Agency, Reactive Domain
Agents are executed by, and move between

agencies. Agencies define both their localization and the
reactive domain they belong to. A reactive domain is an
execution environment for reactive agents, which
controls the sequence of instants, the event dispatching
and reaction execution.

2.2.5 Events
Events are identified by a name. There are two kinds

of event (figure 5):
• an environment event is generated for a whole

reactive domain, and any agent waiting for such an
event in this domain reacts;

• a targeted event is addressed to the reactive interface
of a particular agent, designated by its reactive
reference, located in any reactive domain (local or
remote). Targeted events may hold arguments.

figure 5 : an agent reacting to environment events and
targeted events
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2.2.6 Agent Lifecycle
Moorea agents implement a lifecycle interface so as

to be aware of – and possibly react to – lifecycle stages.
Stages are: after agent creation, before the agent moves,
after an agent has successfully moved, after a move has
failed, before the agent activity is suspended or
resumed, before an agent is terminated, and before an
agent's host agency is shut down.

All these stages are associated to dedicated callbacks
on the agent. For example, an agent typically initializes
itself after its creation, or may decide to move to
another agency when its current host agency is being
shut down. Some of these callbacks may throw an
exception, which means that the corresponding stage is
not acceptable to the agent. For example, an agent that
cannot initialize correctly, or that is not able to move for
some reason, should throw an exception, respectively in
the "after creation" and the "before move" callback.

3. Technical Issues

3.1 Reactive Domains are not Distributed
Each agency is a reactive domain, and domains are

not distributed: the instants sequence is specific to each
domain, with no synchronization between domains. This
choice springs from performance considerations:
managing a distributed domain would require complex
distributed algorithms, resulting in a communication
overhead, and in having the slowest execution node
ruling instant duration for all nodes. Moreover, a
network or execution node hang-up would freeze the
whole distributed reactive domain.

As a consequence, the synchronous property (i.e.
events are present in the instant they are generated) only
applies to events staying in the agency where they are
generated (i.e. all environment events, and targeted
events addressed to local agents). If an application relies
on the synchronous property, then the involved agents
should be located in the same agency; obviously,
mobility makes it possible in a dynamic way.

3.2 Strong Mobility Support
In the mobile computation community, [FUG 98]

defines the concept of weak and strong mobility, to
express the fact that a computation may be more or less
disturbed by mobility. As a matter of fact, a running
process uses local computing resources, which, after a
move, either would have to be accessed remotely, or
would have to be replaced by local similar resources in
the "same" state.

Obviously, today's operating systems do not support
such features. As a consequence, support for
transparency to mobility must be provided by upper
software layers. Moorea claims a strong mobility
support for two reasons: (1) execution is not disturbed
and (2) communications are not disturbed.

3.2.1 Transparency to Mobility for Execution
Moorea agents' behavior is represented by a reactive

program, whose execution is split into instants. The
beginning of an instant is triggered by the reactive
domain, and the end of an instant is reached when no
agent reacts any more. At the end of an instant, the state
of agents is stable, well defined and easy (not costly) to
transport. Moorea takes advantage of this property, by
actually performing moves once the end of instant is
reached. The moving agent is transported with its
behavior and execution state, and then resumed in the
new reactive domain, in a new instant.

3.2.2 Transparency to Mobility for Communication
Since Moorea reactive model tightly couples activity

with communication, transparent mobility must also
consider events. While environment events remain
purely local, targeted events should always follow the
target agent, without being lost, even during the agent
transportation timeframe. This transparency is achieved
by a combination of two well-known techniques,
namely forwarding and naming service:

• forwarding consists in replacing the moved agent by
a forwarder object that forwards invocations to the
new location. Basic forwarding leads to a fragile and
inefficient reference chain (i.e. a chain of several
indirections), relying on every visited agency to
keep running, which is not realistic, and against a
major mobility justification;

• a naming service – or relocator – associates a name
to a location-dependent distributed object reference.
By updating this information after each move,
mobile agents can still be located. The major
drawback of this technique is that it introduces a
central authority and bottleneck.
Moorea combines both techniques while seriously

limiting these drawbacks. First of all, the reference
chain maximum length is limited to one indirection, by
having forwarders directly get the new agent location
from the relocator. Moreover, the forwarder updates the
reference in the clients, which reduces the relocator
"bottleneck effect" by preventing clients from invoking
the relocator. Lastly, there may be several relocator
servers, defining their own name spaces, and avoiding
to enforce globally unique agent names.

Let's assume that an agent is moving from agency A
to agency B, and that other agents send it targeted
events:

• during the move, and as long as the agent has not
been reinstalled in agency B, events are buffered in
agency A;

• agency A gets the new agent reference from the
relocator, forwards events to agency B, and gives the
new agent reference to the senders of the events;

• if agency A is unreachable (e.g. it has been shut
down), the client directly gets the new reference
from the relocator.



These transparency features are implemented by the
stubs in the underlying middleware (i.e. Jonathan and its
RMI personality Jeremie, and Rhum – see section 2.1).
They are not fully specific to Moorea, and have been
reused in another work in progress, to support object
mobility in Jonathan's CORBA personality David.

3.3 Agent Management
Moorea offers two standardized management

interfaces on CORBA, as specified by MASIF
[OMG 97]. Agencies implement interface
MAFAgentSystem to offer creation and termination of
agents, reception of moving agents, suspension and
resumption of agent activity, termination of the agency,
and local agent listing. A "finder" service implements
interface MAFFinder, for agent and agencies
registration and lookup.

It appeared that a few useful operations were
missing in MASIF interfaces, and we extended each of
them with two extra operations, via inheritance. For
example, interface MAFAgentSystem has been enriched
with a move_agent operation, enabling to ask an
agency to move an agent away (MAFAgentSystem only
allows to ask an agency to receive an agent).

3.4 Interworking between Reactive and non-
Reactive Software

3.4.1 Constraints on Instant and Reaction Duration
The synchronous programming model assumes that

instants have a null duration, which means that the
synchronous system reacts quicker than the environment
it is bound to. Meeting this requirement requires very
short reactions.

This constraint is taken into account in Moorea. For
example, many remote management methods are
performed with "future" semantics. This means that the
call immediately returns a call identifier, and that an
associated callback will later give the result or the
exception of the actual call.

3.4.2 Java Method Invocation on a Reactive Agent
Reactive agents lifecycle is managed through a

Rhum program, detecting lifecycle events and invoking
associated lifecycle callbacks on the passive object. The
difficulty springs from the fact that SMI kernel has to
wait the callback completion, and to get the thrown
exception, if any (see section 2.2.6), while events are
one-way (asynchronous).

When SMI kernel invokes a lifecycle callback on an
agent, it is translated into an event, handled by the
reactive domain's thread, while the caller thread is
blocked (see figure 6). Then, the reactive domain's
thread invokes the actual callback on the passive object,
and finally awakes the caller's thread. If the callback
throws an exception, it is forwarded to the caller thread.

figure 6 : invocation of callback beforeSuspend()

4. Related Work

4.1 Middleware Approach, Interoperability
While today's mobile agent platforms generally don't

follow a middleware approach, not only Moorea is built
on ORB Jonathan, but its mobility feature is fully
CORBA-based and MASIF compliant. Moorea agents
and agencies communicate through the ORB, using
common associated services such as naming service.
Previous similar approaches, and their benefits in terms
of code reuse and agent interoperability, have already
been described in [DIL 98]. IKV++'s Grasshopper is the
only other known MASIF-compliant platform.

Besides MASIF specification, the activities of the
Foundation for Intelligent Physical Agents consortium
(FIPA) and OMG's Agent Special Interest Group
(including a mobility working group) show that
interoperability is considered as one of the key issues
for the success of agent technology.

4.2 Transparency to Mobility
Most of mobile agent platforms take care of

transporting the code and agent "static" state (i.e. classes
and attributes values) when moving an agent, but very
few of them are able to transport the execution state, i.e.
to resume the agent execution at the very point of its
execution. Dartmouth College's AgentTcl/D'agent and
General Magic's Telescript support such strong
mobility. The problem with strong mobility is that it is
typically complex and costly, especially when agent
activity is based on threads (e.g. see work on Java
thread migration in [TRU 00]).

An efficient alternative of the "move anytime"
approach is the "move sometimes" approach, which
means that the agent activity can be interrupted, frozen,
transported and resumed only at certain well identified
points. In the case of Moorea, these points are clearly
identified by the end of instants. After a move, an agent
transparently resumes its activity in a new instant, at a
new location. Moreover, this transparency support is
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provided at low cost, by avoiding to transport
"expensive" items like execution threads.

4.3 Formal "Behavior"
Thanks to the separate programming of the agent

global behavior and basic computing procedures,
Moorea exhibits the agent activity logic, with its parallel
branches, synchronization points, event waiting. This
high level activity representation is not only the key to
low-cost, portable mobility, but also a key to easy and
reliable agent programming, since it prevents the
computing procedures from handling monitors,
semaphores, locks, etc., for managing synchronization
and concurrency issues. Moreover, it opens the way to
simulating and testing, and even probably to proving
execution properties, as it is already the case with
Esterel programs [BER 00].

The Bond agent system [BOL 00] follows a very
similar approach: agent activity is controlled by a multi-
plane state machine, generated from a description in a
dedicated language called "BluePrint". The basic
processing procedures are implemented by a set of so-
called "strategies" objects, equivalent for Moorea's
passive object. Unlike Moorea, it is not based on a
synchronous programming model.

Being also based on synchronous reactive objects
and a dialect close to Rhum, Rejo is the most similar
approach [ACO 01]. This on-going work goes further in
the integration between Java and the reactive language,
since both the reactive behavior and the Java code are
mixed in the same file. Usage will tell what is the most
convenient between separating basic processing and
activity skeleton with Moorea, or having a unique,
unified agent definition with Rejo. As a major
difference, events in Rejo are basically local, while
Moorea object references support distribution.

5. Application to Telecommunication
Service Execution Environment

5.1 Requirements of Telecommunication Services
In the context of the ATHOS project, Moorea is

going to be used to supply a telecommunication service
creation and execution environment. This European
project is aiming at defining a relevant architecture for
such an environment, in order to develop and run
services on a bunch of networked computers linked to
telecommunication networks through legacy protocol
stacks, typically in an intelligent network architecture.
The service creation and execution environment is
expected to support several advanced features.

On the one hand, distribution would be valuable for
a number of reasons: first of all, the execution
environment should be highly scalable to support a
great variety of services (from tens to hundreds) and to
handle thousands (or more) of calls to these services
simultaneously. Moreover, the execution environment

should be able to be continuously running for a long
period of time (at least for months). This requirement
implies that it should be possible to dynamically
reconfigure the execution environment for maintenance
issues (e.g. add, reboot or shutdown a node) and to
dynamically update software.

On the other hand, it should be "component"-
oriented to ease the decomposition of the overall
complexity, the reuse of existing code, the dynamic
distribution, while separating architecture definition,
assembling and management from pure software
programming. The management features for the service
components should support deployment, upgrade,
monitoring, troubleshooting, dynamic load-balancing...

Finally, the creation and execution environment
should hide hardware and operating system
heterogeneity of execution nodes, in order to limit
service development overhead and avoid to be bound to
one particular computing environment (hardware,
operating system). Common service management and
interoperability between services are also key issues.

5.2 Agent-Based Approach
Among the variety of existing component-oriented

models, the agent paradigm retains service designers'
attention. Agents may be regarded as components
encapsulating data, processing capabilities and
behavior. As a consequence, agents offer a high level of
modularity and autonomy, which are key properties for
decomposing services into autonomous – but interacting
– components, that can be distributed and managed over
a network. Besides the benefit of splitting complexity
into small independent and reusable modules,
implementing services as autonomous agents also
allows a service to fail without disturbing the others,
and makes it possible to selectively upgrade some parts
of services, without necessarily shutting down any node
nor any other service.

5.3 Reactive Agents
The execution model of reactive agents is based on

reacting in sequence (i.e. not in parallel) to
asynchronous messages ("events"). This model both
saves processing time (no preemptive scheduling and no
context switching) and avoids concurrency-related
troubles (consistency issues, deadlocks between critical
sections in mutual exclusion).

This model thus enforces good scalability and
reliability properties, while simplifying the
programmer's task regarding concurrent access and
management of execution threads. Moreover, using a
reactive language such as Rhum is convenient to
implement communication protocol control.

5.4 Reactive Agents Mobility
Moorea's mobility capabilities make it possible to

optimize utilization of computing and networking



resources. For example, it is possible that particular
phases of a service execution require a lot of message
exchange between two (or more) agents. In this case, it
may be interesting to place these agents in the same
execution node in order to save network bandwidth.

Moreover, it may be valuable to move an agent to
another machine in various cases: because its current
execution node is overloaded (load balancing), because
a new node has just been added to the distributed
execution environment (load balancing and system
maintenance), or because its current execution node is
going to be shut down (system maintenance).

Lastly, it is important to note that the combination of
mobility and reactive model offers a clear mobility
semantics, while considerably limiting mobility
overhead (see section 3.2.1). This approach must be
compared to thread-based mobile agent activity, whose
mobility is either disturbing (the execution state is reset
to some default state after move), or complex and costly
(mobility includes execution stacks...), while
introducing (sometimes unclear) side effects to the
programming semantics. Once again, we see that the
reactive model is a relevant approach to improve
scalability and reliability.

5.5 Interoperability Concerns
Telecommunication services generally consist of

vertically integrated platforms, that typically don't
interoperate with each other, and come with their own
management system.

To improve this situation, Moorea's architecture is
based on middleware, including several standard layers
and interfaces, namely CORBA, Java RMI and MASIF.
Beyond this software infrastructure, and although agent
interoperability is not directly addressed by Moorea, it
has to be noted that Rhum would be particularly
convenient to both specify and implement speech acts
based protocols/dialogs as specified by FIPA's Agent
Communication Language.

6. Conclusion
Moorea is a 100% Java mobile agent platform, based

on standard software infrastructure (Java-RMI,
CORBA, MAF/MASIF), and a distributed reactive
object model. These peculiarities improve portability,
interoperability and standardized management on the
one hand, as well as scalability, transparency to
mobility, and reliability on the other hand.

Thanks to Rhum synchronous reactive language,
Moorea offers the opportunity to conveniently
implement telecommunication services by separating
the service logic from the basic actions. More than
convenience, the high level representation of a service
logic helps troubleshooting, extendibility and
simulation, and probably also provability of a few
properties. Moreover, Moorea agents being highly
mobile (high level of transparency, low-cost mobility),

they are good candidates for dynamic load-balancing of
executing services. Directions for future work on
Moorea include performance evaluation, dynamic load-
balancing, dynamic versioning, and provability.
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