
Programming and Executing Telecommunication
Service Logic with Moorea Reactive Mobile Agents

Bruno Dillenseger1, Anne-Marie Tagant1, Laurent Hazard2

France Télécom R&D, DTL/ASR
1 28 chemin du Vieux Chêne, BP 98, 38243 Meylan cedex

2 38/40 rue Général Leclerc, 92794 Issy Moulineaux cedex 9
{bruno.dillenseger, annemarie.tagant,
laurent.hazard}@rd.francetelecom.com

Abstract. In the context of advanced telecommunication service execution
environments, this paper presents a reactive mobile agent platform, based on a
synchronous programming model, a flexible object request broker, and OMG's
MAF specifications on mobile agent systems interoperability. The paper details
the specific design of the platform, and shows how it addresses key issues such
as scalability, reliability, transparent mobility and interoperability. Finally, the
paper shows the use of Moorea agents for executing telecommunication service
logic in the ITEA Athos European project's Enhanced Call Server architecture,
featuring transparent and dynamic distributed system reconfiguration.

1 Introduction

As of today's research topics, involving (mobile and/or intelligent) agent technology
in telecommunication infrastructures is a well-known trend (e.g. see a digest of
several European projects in [12]). It has been used already in several experiments
ranging from information infrastructure to network management and active networks.
Interest in mobile agent technology mainly arises from its ability to handle in a
unified way a variety of issues [10], such as code deployment, autonomous adaptive
routing, network bandwidth saving, disconnected operations...

The topic of this paper is the use of mobile agent technology in the context of a
distributed execution environment for telecommunication applications. While many
practical applications of mobile agent technology exploit only a subset of the
paradigm (e.g. single-hop, weak mobility), our approach makes a complete utilization
of the advanced properties of the Moorea platform. The development of Moorea
springs from the consideration that mobile agent technology often comes with several
drawbacks, such as bad scalability, cost and complexity of agent activity
transportation, unreliable agent communication and lack of interoperability. Moorea is
a Java mobile agent platform implementing the Mobile Agent Facilities specification
[13]. It comes with a peculiar reactive model for agent communication and activity,
enhanced with distribution support and transparent mobility features.

This paper first describes the Moorea platform, details its specific properties and
compares them to existing platforms. Then, the paper describes the use of Moorea in
the field of telecommunication service execution environments, through the example
of an Enhanced Call Server developed in the context of the Athos European project.

2 Moorea Overview

2.1 Moorea architecture

Moorea ("MObile Objects, REactive Agents") is a 100% Java reactive mobile agent
platform. As shown by Fig. 1, its architecture combines:
− a reactive object model and execution kernel (Rhum and Junior [11]),
− with a Java mobile object framework (SMI [7]) implementing OMG's Mobile

Agent Facilities specification [13] (MAF, also known as MASIF),
− on top of a flexible Object Request Broker (Jonathan [21]) offering both a Java-

RMI and a CORBA personality (API),
− extended with transparency to mobility support.

Fig. 1. Moorea's software architecture is based on the integration of a MAF-based mobile
agent framework (SMI) with a reactive distributed object environment (Rhum).

2.2 Key concepts

2.2.1 Reactive agents and events
Moorea's agent model is based on Rhum's distributed reactive object model (Fig. 2).
The basic processing procedures and internal data of an agent is embedded in a
reactive object which controls its behavior. A behavior describes the agent's activity
in a synchronous language - Rhum - featuring high-level constructs to define parallel
branches, conditions, synchronization, loops... Agents are reactive in that the
execution of the behavior may both depend on (or react to) and generate events.

Agents are created, hosted and executed by agencies (agent systems in MAF
terminology). Events are generated by agents or by their host agency. Events may
hold values, and may be either locally visible by all the agents in a given agency, or
specifically sent to a given agent, whatever local or remote. The exact semantics of
events is given in section 2.2.2. Agents are designated through their reference, which
may be used for managing them or for sending them events.

Jonathan

hardware and base software
heterogeneity transparency Java virtual machine

flexible, open ORB

David Jeremie

SMI

MOOREA

Rhum /
Junior

MAF-based mobility framework

CORBA API RMI API

synchronous reactive objects

mobility transparency
enhancements

Fig. 2. The behavior is compiled from a Rhum program to a Java reactive class, embedding the
associated passive object. Events are mapped to methods of the object's reactive interface.

2.2.2 Focus on Synchronous Programming model
Derived from Esterel [3], synchronous language Rhum slightly modifies its semantics
to avoid causality problems and to allow dynamic program composition. However,
the synchronous execution principle remains: in such an execution model, time is
sliced into logical instants, which define the lifetime of an event and the reaction
semantics (Fig. 3): (1) an event is present during an instant if and only if it is
generated during this instant; (2) reactions to an event are run in the same instant; (3)
an event may trigger reactions only once per instant, whatever the number of times
the event has been generated during this instant. An instant ends once all reactions are
terminated or stopped. A reaction stops by waiting an event which is not present in
the instant, or by explicitly waiting next instant.

Fig. 3. A synchronous execution is split in instants where agents react to and generate events.

Each agency contains an engine to locally manage instants, events and reactions.
Agencies are independent reactive domains (for efficiency reasons, sequences of
instants of distinct agencies are fully independent).

2.2.3 Scalability aspects
The execution model is based on reacting in sequence (i.e. with no actual parallelism)
to events. This model both saves processing time (no preemptive scheduling and no
context switching) and avoids complex code related to concurrency and consistency
management. This model thus enforces good scalability, in terms of number of agents
per agency. A scalability comparison of Rhum with thread-based agents is given in
[8]. The results show that the number of reactive agents does not impact the system
normal functioning, while allowing a greater number of agents. At the present time,
we can run a million reactive agents on a single PC.

reactive
behaviour

basic
processing
procedures,
agent's data

synchronous
reactive

specification
(Rhum)

passive
class
(Java)

reactive
class
(Java)

 compiler

events

reactive
interface

logical time

Start new
instant

Agents react to events in the
instant they are generated.

An instant ends when all reactions
are complete or stopped.

executing idle

2.3 Strong Mobility Suppor t

In the mobile computation community, Fugetta et al [9] define the concept of weak
and strong mobility, to express the fact that a computation may be more or less
disturbed by mobility. As a matter of fact, a running process uses local computing
resources, which, after a move, either would have to be accessed remotely, or would
have to be replaced by local similar resources in the "same" state.

Obviously, today's operating systems do not support such features. As a
consequence, support for transparency to mobility must be provided by upper
software layers. Moorea claims a strong mobility support for two reasons: (1)
execution is not disturbed and (2) communications are not disturbed.

2.3.1 Transparency to Mobility for Execution
Moorea agents' behavior is represented by a reactive program, whose execution is
split into instants. The beginning of an instant is triggered by the reactive domain, and
the end of an instant is reached when no agent reacts any more. At the end of an
instant, the state of agents is stable, well defined and easy (not costly) to transport.
Moorea takes advantage of this property, by actually performing moves once the end
of instant is reached. A moving agent is frozen and transported with its behavior and
full state, and then resumed in the new reactive domain (agency), in a new instant.

Note that the combination of mobility and reactive model considerably limits
mobility overhead. This approach must be compared to thread-based mobile agents,
whose mobility is either disturbing (the execution state is reset to some default state
after move), or complex and costly (mobility includes execution stacks). On the
contrary, Moorea's agent model allows a low-cost serialization and transport of
agents' execution state (an agent behavior is equivalent to a state machine). Moreover,
the synchronous reactive model offers clear mobility semantics, which is not always
the case of thread-based mobile agents introducing (sometimes unclear) side effects to
the programming semantics. Besides, the programmer is freed from concurrency
management burden, as well as inconsistency and deadlock threats (see 2.2.3).

2.3.2 Transparency to Mobility for Communication
Since Moorea reactive model tightly couples activity with communication,
transparent mobility must also consider events. While environment events remain
purely local, targeted events should always follow the target agent, without being lost,
even during the agent transportation timeframe. This transparency is achieved by a
combination of two well-known techniques, namely forwarding and naming service:
− forwarding consists in replacing the moved agent by a forwarder object that

forwards invocations to the new location. Basic forwarding can lead to a long
reference chain (multiple hops), relying on every visited agency to keep running,
which is not always assumable for mobile agent applications;

− a naming service – or relocator – associates a name to a location-dependent
distributed object reference. By updating this information after each move, mobile
agents can still be located. The major drawback of this technique is that it
introduces a central authority and bottleneck.

Moorea combines both techniques while seriously limiting these drawbacks. First of
all, the reference chain maximum length is limited to one indirection, by having
forwarders directly get the new agent location from the relocator. Moreover, the
forwarder updates the reference in the clients, which reduces the relocator "bottleneck

effect" by preventing clients from invoking the relocator. Lastly, there may be several
relocator servers, defining their own name spaces, and avoiding to enforce globally
unique agent names.

Let's assume that an agent is moving from agency A to agency B, and that other
agents send it targeted events:
− during the move, and as long as the agent has not been reinstalled in agency B,

events are buffered in agency A;
− agency A gets the new agent reference from the relocator, forwards events to

agency B, and gives the new agent reference to the senders of the events;
− if agency A is unreachable (e.g. it has been shut down), the client directly gets the

new reference from the relocator.
These transparency features are implemented by the stubs in the underlying
middleware (i.e. Jonathan and its RMI personality Jeremie, and Rhum) [14]. They are
not fully specific to Moorea, and have been reused in another work in progress, to
support object mobility in Jonathan's CORBA personality (David).

3 Related Work

3.1 Middleware Approach, Interoperability

Moorea follows a middleware approach, which was not the case for historical mobile
agent platforms. Not only Moorea is built on open ORB Jonathan, but its mobility
feature is fully CORBA-based and MAF compliant thanks to the underlying SMI
framework [7]. Moorea agents and agencies communicate through the ORB, using
common services such as naming service. Previous similar approaches, and their
benefits in terms of code reuse and agent interoperability, have already been described
in [6]. Below SMI, other known mobile agent systems implementing MAF are
Grasshopper [20], SOMA [23]; version 1.1 of Aglets [17] plan to be MAF compliant.

Besides MAF specification, the activities of the Foundation for Intelligent Physical
Agents consortium (FIPA [19]) and OMG's Agent Special Interest Group [22]
(including a mobility working group) show that interoperability is considered as one
of the key issues for the success of agent technology.

3.2 Transparency to Mobility

Most of mobile agent platforms take care of transporting the agent's code and "static"
state when moving an agent, but very few of them are able to transport the execution
state, i.e. to resume the agent execution at the very point of its execution. Dartmouth
College's AgentTcl/D'agent [10] and General Magic's Telescript [16] support such
strong mobility. The problem with strong mobility is that it is typically complex and
costly, especially when agent activity is based on threads (e.g. see work on Java
thread migration in [15]).

An efficient alternative of the "move anytime" approach is the "move sometimes"
approach, which means that the agent activity can be interrupted, frozen, transported
and resumed only at certain well identified points. In the case of Moorea, these points

identified by the ends of instant (i.e. when the agent is waiting for an absent event or
for next instant, see 2.2.2). After a move, an agent transparently resumes its activity in
a new instant, at a new location. This semantics is clear - and "natural" in some way -,
whatever the behavior complexity and the number of active loops or parallel
branches.

As a consequence of this approach, the transparent mobility support is provided at
low cost, by avoiding to freeze and transport "expensive" items like running threads.

3.3 Formal " Behavior"

Thanks to the separate programming of the agent global behavior and basic
computing procedures, Moorea exhibits the agent activity logic, with its parallel
branches, synchronization points, event waiting. This high level activity
representation is not only the key to low-cost, portable mobility, but also a key to easy
and reliable agent programming, since it prevents the computing procedures from
handling monitors, semaphores, locks, etc., for managing synchronization and
concurrency issues. Moreover, it opens the way to simulating and testing, and even
probably to proving execution properties, as it is already the case with Esterel
programs [4].

The Bond agent system [5] follows a very similar approach: agent activity is
controlled by a multi-plane state machine, generated from a description in a dedicated
language called "BluePrint". The basic processing procedures are implemented by a
set of so-called "strategies" objects, equivalent for Moorea's passive object. Unlike
Moorea, it is not based on a synchronous programming model.

Being also based on synchronous reactive objects and a dialect close to Rhum,
Rejo is the most similar approach [1]. This on-going work goes further in the
integration between Java and the reactive language, since both the reactive behavior
and the Java code are mixed in the same file. Usage will tell what is the most
convenient between separating basic processing and activity skeleton with Moorea, or
having a unique, unified agent definition with Rejo. As a major difference, events in
Rejo are basically local, while Moorea object references support distribution.

4 Application to a Telecommunication Service Execution
Environment

4.1 Requirements of Telecommunication Services

In the ATHOS project [18], Moorea is integrated to a telecommunication service
creation and execution environment. This European project is aiming at defining a
relevant architecture for such an environment, in order to develop and run services on
a bunch of computers linked to telecommunication networks through legacy protocol
stacks, typically in an intelligent network architecture. The service creation and
execution environment is expected to support several advanced features.

First of all, distribution would be valuable, for the execution environment should
be highly scalable to support a great variety of services (from tens to hundreds) and to
handle thousands (or more) of simultaneously active instances of these services.
Moreover, the execution environment should be able to be continuously running for a
long period of time (at least for months). This requirement implies that it should be
possible to dynamically reconfigure the execution environment for maintenance
issues (e.g. add, reboot or shutdown a node) and to dynamically update software.

4.2 Moorea in the ATHOS Architecture

Fig. 4. The ATHOS Enhanced Call Server architecture makes it possible to build advanced
services, accessing both the Internet and the Intelligent Network worlds, using modern and
open information technologies.

The ATHOS architecture is based on the concept of Enhanced Call Server (or ECS,
Fig. 4). The ECS embeds the protocols-specific knowledge and software of both the
Internet and Intelligent Network worlds. Its static infrastructure is composed of a
Unix server running the AAA message-oriented middleware [2] (see also JORAM in
[21]) and protocol stacks connected through IP to a gateway giving access to the
Intelligent Network. The service logic is executed by Moorea agents on a local
network of computers, providing the dynamic infrastructure of the ECS.

4.3 Example: a simple Email Waiting Indicator service

4.3.1 Scenar io
A demonstration of Email Waiting Indicator (or EWI) service is developed on the
ECS architecture. This service consists in providing a phone subscriber with
information about his pending electronic messages. Once the service is subscribed
and the information about the email account is provided (typically the IP address of
the POP3 server, identifier and password), the user may enable and disable the service

Internet

INAP...

SS7

Internet
protocols

agent-based, message-
oriented middleware
+ Moorea gateway

intelligent network

central
office

Service Logic
execution
nodes

Service Logic execution Moorea agents

Enhanced Call Server

local network

by dialing special codes on its phone. When the service is enabled and the user
unhooks his/her phone, s/he gets the information about pending messages (e.g. special
tone or voice message). These IN events (dial codes, off-hook) are handled by the
ECS, which performs the appropriate action.

4.3.2 Implementation
To enable the service, the ECS asks a Factory agent to make a new EWI service logic
agent ready. The Factory agent either recycles a passivated EWI service logic agent,
or creates a new instance if necessary. Note that the service logic agent may be
created and reside in any agency, on any execution node. Then, the Factory agent
sends an "activation" event to the service logic agent and provides it with the user's
profile holding the necessary data (identification, e-mail account...).

Once activated, the service logic agent sends its reference to the ECS which stores
it in the user profile. Finally, the service logic agent starts polling the e-mail server in
a generic way, by using an e-mail server encapsulation provided by the ECS, in order
to keep the service logic independent from the protocols. The polling period is based
on a "tick_1s" event generated every second by a timer agent in each agency.

When the user unhooks the phone, the ECS finds the EWI service logic agent's
reference in the user's profile and sends a "signaling" event to the agent. The service
logic agent gives the information about pending messages to the ECS which transmits
the information through the Intelligent Network to the user in an appropriate manner.

behavior service_behavior() {

loop // endless loop (i.e. until agent is terminated)
await activation ; // wait for occurrence of activation event
{ activation(activation::arg_0) } ; // invoke passive object
stop ; // wait for next instant
do

loop // poll email account
repeat { delay } times // wait a number of ticks

await tick_1s ; stop // from a timer agent
end ;

{ polling() } ; // ask mail server for information
await reply ; // wait information from mail server
{ getReply(reply::arg_0) }

end

|| // parallel composition
loop // give e-mail information to subscriber when necessary

await signaling ;
{ signaling() } ;
stop

end

until passivation ; // exit on occurrence of passivation event
{ passivated() } // inform the Factory agent

end }

Fig. 5. The Simple Email Waiting Indicator service logic is executed by a Moorea agent,
whose behavior is coded in synchronous reactive language Rhum.

When the user disables the service, the ECS sends a "passivation" event to the EWI
service logic agent, which in turn informs the Factory agent and goes idle. The user
profile is updated to clear the service logic agent reference. The passivated agent will
be recycled by the factory for any later EWI service activation for any subscriber.

Fig. 5 shows the reactive behavior of the corresponding EWI service logic agent.

4.3.3 Advanced features enabled by Moorea
Thanks to the strong mobility support, the service logic agents may be transparently
moved from one agency to another, from one execution node to another. This makes
it possible to add and remove execution nodes dynamically. We introduced in each
agency a Manager agent, whose role is to dispatch every local service logic agent to
other agencies before shutting down the agency. This move is transparent to the ECS
and the Factory agent, which can still use the same references to deal with, and
manage, the service logic agents. In the other way round, new agencies are taken into
account on the fly by the Factory and Manager agents to host new or redeployed
service logic agents. This is also an opportunity to implement preemptive dynamic
load balancing, which is the next step of our work.

Besides these features, we found useful (after an adaptation stage) to use a
synchronous language to code the service logic, and not to have to care about
concurrency issues when programming the associated passive classes. The reactive
behavior is also a good basis for simulation and checking.

5 Conclusion

Moorea is a 100% Java mobile agent platform, based on a standard software
infrastructure (Java, RMI, CORBA, MAF), and a distributed reactive object model.
These peculiarities improve portability, interoperability and standardized management
on the one hand, as well as scalability, transparency to mobility, and reliability on the
other hand. We have shown an application of Moorea to a telecommunication service
execution environment. Based on synchronous reactive language Rhum, Moorea
offers the opportunity to conveniently implement telecommunication services by
separating the service logic from the basic computations. Moreover, the transparent,
low-cost mobility of Moorea agents provides an opportunity for dynamic
redistribution and load-balancing of executing services.

Immediate directions for future work on Moorea deal with scalability
characterization and preemptive dynamic load balancing. Further directions include
model-checking and dynamic versioning.

Acknowledgement

Moorea is developed in the context of the ATHOS project of the ITEA European
research program. Thanks go to Italtel team, for their design of the ECS and their
interest in agent technology, and to Serge Lacourte and Laurent Chauvirey for their
help on the AAA-Moorea Gateway.

References

[1] Acosta Bermejo, R., "Programming in REJO", Calculateurs parallèles, special issue
"Evolutions dans le domaine des intergiciels", Hermes ed., 2001.

[2] Bellissard L., de Palma N., Freyssinet A., Herrmann M., Lacourte S., "An Agent Platform
for Reliable Asynchronous Distributed Programming". Symposium on Reliable Distributed
Systems (SRDS’99), Lausanne (Switzerland), 20-22 October 1999.

[3] Berry G., Gonthier G., "The Esterel Synchronous Language: Design, Semantics,
Implementation", Science of Computer Programming, 19(2), 1992.

[4] Bertin V., Poize M., Pulou J., Sifakis J., "Towards Validated Real-Rime Software", proc.
12th Euromicro Conference on Real-Time Systems, Stockholm, june 2000.

[5] Bölöni L., Jun K., Palacz K., Sion R., Marinescu D., "The Bond Agent System and
Applications", proc. ASA/MA 2000, Lecture Notes in Computer Science 1882, Springer,
pp. 99-112.

[6] Dillenseger B., "From Interoperability to Cooperation: Building Intelligent Agents on
Middleware", proc. 2nd International Workshop on Intelligent Agents for
Telecommunication Applications, Paris, july 1998. Lecture Notes in Artificial Intelligence
1437, Springer, ISBN 3-540-64720-1, pp. 220-232.

[7] Dillenseger B., "MobiliTools: An OMG standards-based toolbox for agent mobility and
interoperability", proc. 6th IFIP Conference on Intelligence in Networks (SmartNet 2000),
Vienna, september 2000, Kluwer Academic Publishers, pp. 353-366.

[8] Dillenseger B., Tagant A.-M., Hazard L., Tran Viet H., "Les agents mobiles réactifs
Mooréa - une approche réactive pour la transparence à la mobilité et le passage à l'échelle"
RSTI-TSI 21/2002 "Agents et codes mobiles" special issue, Lavoisier-Hermès ed. p. 1-26.

[9] Fugetta A., Picco G.-P., Vigna G., "Understanding Code Mobility", IEEE Transactions on
Software Engineering, vol. 24, No 5, 1998, pp.342-361.

[10] Gray D., Kotz D., Nog S., Rus D., Cybenko G., "Mobile Agents: the next generation in
distributed computing", proc. 2nd Aizu Int. Symposium on Parallel Algorithms and
Architectures Synthesis, Fukushima (Japan), IEEE Computer Society Press, 1997, p. 8-24.

[11] Hazard L., Susini J.-F., Boussinot F., "The Junior reactive kernel", Rapport de recherche
Inria 3732, 1999.

[12] InfoWin project, "Agents Technology in Europe, ACTS Activities", 1999, ISBN 3-00-
005267-4.

[13] Object Management Group, "Mobile Agent System Interoperability Facilities", TC
document orbos/97-10-05, 1997. Revised in "Mobile Agent Facilies", formal/2000-01-02.

[14] Tran Viet H., "Gestion de la mobilité dans l'ORB flexible Jonathan", Ph.D. dissertation,
Université Joseph Fourier, Grenoble (France), 25th April 2002.

[15] Truyen E., Robben B., Vanhaute B., Coninx T., Joosen W., Verbaeten P., "Portable
support for transparent thread migration in Java", Proc. ASA/MA 2000, Lecture Notes in
Computer Science 1882, Springer, pp. 29-43.

[16] White J., "Telescript technology: the foundation for the electronic market place", General
Magic White Paper, General Magic, 1994.

Web references

[17] Aglets - http://www.trl.ibm.com/aglets/index_e.htm
[18] ATHOS project (ITEA European program) - http://www.itea-athos.com/
[19] Foundation for Intelligent Physical Agents - http://www.fipa.org/
[20] Grasshopper - http://www.grasshopper.de/
[21] ObjectWeb Initiative - http://www.objectweb.org/
[22] OMG Agent Platform Special Interest Group - http://www.objs.com/agent/
[23] SOMA - http://lia.deis.unibo.it/Research/SOMA/

