
m:

3 31
EPT

rted
eek.

ach
of
stem
uted
and
s and

e the
rom
n of

ey are
arious
ch is

eneric
ence

ted
ulting
sential

lving
s help
andard
rse that

server
arket”
, and
come
Towards a multi-agent model for the office information syste
a Prolog based approach(1)

AUTHORS: Bruno Dillenseger (phone +33 31 75 91 39, email dillenseger@sept.fr, fax +3
75 06 31) and François Bourdon (phone +33 31 75 91 19, email bourdon@sept.fr), S
SCE/ARC, 42 rue des Coutures, BP 6243, F-14066 Caen cedex, France.

KEYWORDS: object-oriented distributed system, Prolog, COOL, Computer Suppo
Cooperative Work, Multi-Agent platform, service negotiation, cooperation, client-server s

ABSTRACT: The background of this article consists in a distributed object oriented appro
for the development of logically and physically distributed applications in the field
Computer Supported Cooperative Work. The use of an object oriented distributed sy
(COOL) is a first step towards the implementation of solutions to these naturally distrib
problems. But this support is insufficient to directly implement high-level interactions
behaviour: the entities have to adjust themselves to a dynamic system where service
servers appear, evolve, and disappear.

This article introduces both a model and a tool which are designed to enhanc
entities cooperation ability and autonomous adaptability. The model springs f
investigations in the field of Multi-Agent Systems and consists in a uniform representatio
every resource of the system (hardware, software, user) by agents.

The implementation tool and associated goodies are described in some detail. Th
based on an enhanced Prolog interpreter essentially integrating the COOL features: v
communication modes, active objects, migrating objects... Our Prolog-based approa
discussed and illustrated by the implementation of a distributed application and some g
multi-agent system structures and protocols. We also show how several artificial intellig
techniques are involved in the solutions we propose.

1. Introduction

1.1 Autonomy and integration of the information system

The unpredictable evolution of the office [13], in a geographically distribu
environment, makes it necessary for the information system to adapt itself to the res
organizational and operational changes. Thus, autonomy increasingly becomes an es
property for the overall information system and its components.

Moreover, as users are confronted with a profusion of autonomous and evo
services, they need a guide to find the most relevant services for their current tasks. Thi
requires interactions between the autonomous computer entities, and should rely on a st
interface language. This common language is supposed to create a basic semantic unive
should be shared by any sender and any receiver of a message. Thisintegrator principle
concept was introduced by Jean Erceau and Michel Barat in [2].

Beyond a functional representation of the offered and/or requested services, the
quest has to feature negotiation possibilities to make the requests suitable for the “m
tender, learning (memory) capabilities to avoid systematic and useless quests
sophisticated communications that allow manual (human) actions when negotiations be
hard.

1. in collaboration with LAIAC, Université de Caen.



oach
cting
and
f
ents

nd its
ritten
s of
. But
viour

will
their
y to
del is

ial
]. We
erently
nefit

singly

ation

[12],
], our
a task

t and

icular
bject
ystem
to be

eek the

France
1.2 Towards tools and techniques

The combination of the distributed systems technology with an object-oriented appr
makes it possible to conceive applications as collections of independent and intera
entities. This approach is quite relevant to many families of problems that are logically
physically distributed by nature. The SEPT(2) is confronted with such issues in the field o
Computer Supported Cooperative Work: automatic circulation of electronic docum
(workflow) in CIDRE [4], cooperative editing (groupware)...

As a result, we have adopted a Chorus micro-kernel based distributed system a
associated object-oriented layer: COOL [8]. Several distributed applications have been w
in C++ on top of this layer and have shown the great attractiveness of COOL in term
distribution, transparency, communication, encapsulation, and coarse-grain parallelism
this layer by itself is not adequate to directly support the high level cooperation and beha
which is required to provide the entities with sufficient autonomy and adaptability.

Our response to the need of an integrator principle is double. First of all, we
introduce a multi-agent model for all the resources of the information system and
interactions. Then, we will describe a COOL and Prolog based tool set which is likel
support a high level of shared language and semantics. The implementation of our mo
described through a distributed meeting room reservation service.

2. A multi-agent model

2.1 The agent-oriented approach

Our notion of what an agent is springs from the field of Distributed Artific
Intelligence and, more precisely, is inspired by research on an agent-oriented method [6
are interested in the conceptual aspect of the agents, since the problems we face are inh
distributed. But, we are also interested in the implementational point of view, as we be
from the support of an object-oriented distributed system. Moreover, agents are increa
being regarded as a software engineering concept.Agent-oriented programmingis presented in
[11] as a specialization of object-oriented programming (agentmental stateconcept which
takes into account the notions of belief, decision, obligation, basic types of communic
coming from the speech-act theory).

Among the abundance of DAI-theoretical issues such as cooperation matters
distributed plan generation and execution [10], knowledge and belief representation [9
concern is to find an answer to this fundamental question: when an agent has to complete
it can not solve on its own, how is it going to find the most appropriate cooperating agen
then, how is it going to negotiate a service?

This is an essential issue for any object-oriented distributed system, which is a part
multi-agent system: when a client object intends to run a method of a remote server o
among many other available ones, it has to use its knowledge and some special s
structures. The function of these structures and associated protocols is to help the link
dynamically made between the servers and the clients. The ODP(3) traders [1], for instance, are
used by the server objects to declare the exported services, and by the client objects to s
relevant servers.

2. “Service d’Etudes communes de La Poste et de France Télécom”, a joint research lab for La Poste and
Télécom.

3. Open Distributed Processing



fice

tware
ents),
set of

are
inter

ation

hey act
ey
with

e to
tion.
other

stem
rvice

offer.

nd its
, both
rces).
ks it
ge for

tocols
ices

d (e.g.
as to
lly, the
2.2 Making a uniform system

The first step of our “integrator principle” relies on a homogeneous vision of the of
information system. The network links a set of machines (sites) together, each of them holding
a fewresources. These resources are likely to appear, disappear or evolve: application sof
(e.g. databases, editors), migrating application entities (e.g. circulating electronic docum
peripheral hardware (e.g. printers), connected users. Each resource owns a particular
availableservices which are associated to some specialattributes.

The structural attributesare static, or weakly dynamic in case of upgrades. They
typical of a particular service implementation. For instance, they may consist in the pr
brand, the printing process and speed. Theconjunctural attributesare typically dynamic
because they depend on the current context. In the printer case, they could hold inform
about the size of the printing queue, the number of remaining paper sheets.

These resources may need some other resources’ services. When they do so, t
like clients looking for servers. As a result, they are confronted with the basic problem: th
have to find the right service and therefore the suitable server. This implies we must cope
two issues:

(1) to be able to contact the resources even though the system is dynamic;
(2) once the contact is made, to be able to negotiate as precisely as possible.

First, both points (1) and (2) require a great deal of interoperability. We propos
support it with an overall integration of the system resources into a uniform representa
Thus, each resource is associated with an agent whose role it is to represent it for the
resources. This principle results in the creation of a uniform layer by projecting the sy
entities (cf. figure 1. ). This layer is the place where the servers queries and the se

negotiations occur. The agents cooperate according to their skills, i.e the services they
The service invocation is the basic cooperation abstraction.

An agent behaves like a unique controller and representative of a resource a
associated services. Its behaviour consists in permanently listening to the requests
internal (i.e. from the resource it represents) and external (i.e. from the other resou
Moreover, it may follow a private activity consisting, for instance, in supervising some tas
is responsible for, or consulting the system (i.e. other agents) and organising its knowled
learning concerns.

Secondly, point (1) introduces the need for special structures and associated pro
which aim at providing servers with clients and vice versa. The first idea is the serv
directory and the implementation of trader agents, but other structures could be imagine
by analogy with classified advertisements, yellow pages). Any agent, at creation time, h
know at least one of these structures, as well as its associated usage protocols. Fina
agents have to share some semantics and a negotiation language to achieve point (2).

word electronic
processor

printeruser

The uniform agents world: cooperarion and service negotiations

figure 1: making a uniform system representation

document
object

office
information
system
resources



ctual
v1

ernel

e)
ble to

d way
e or
rrent
bolic
osen

C,
e of
and
ugh
we

s as a

reted
form
well as
the
ents can
this

d by
new
ion and
gine

rried
llel
ixing
g the

DAI
cations
enefit
3. A multi-agent layer

3.1 An object-oriented distributed system: COOL

The Chorus Object Oriented Layer was specified by SEPT in order to allow the a
distribution of applications such as the Intelligent Circulation of Distributed Folders. COOL
[8] mostly embeds the communication features of the Chorus distributed system micro-k
into an object oriented layer. It is available through a C++COOL class.

Any COOL object owns blocking (call/reply) and non-blocking (send/receiv
communication methods, and communication groups management methods. It is a
migrate from one site to another through the network, to synchronously call anotherCOOL
object’s method (in the same address space with COOL v1, or in a transparent distribute
with COOL v2 which is being released). It may own a mail-box and may be either passiv
execute its own activity. A semaphore object class is also available to cope with concu
access issues. Finally, the communication system is completed with a distributed sym
naming service which allows the objects to register their mail-box address using ch
names.

3.2 Introduction of a high level language: Prolog

The use of C++ is justified by its object-orientedness and its efficiency inherited from
the UNIX systems’ traditional language. But it appears to be limited and not to meet som
our needs: knowledge representation, high level negotiation language, “intelligent”
adaptive behaviours... The steps we took towards Distributed Artificial Intelligence thro
our multi-agent model, called our attention to the traditional languages of this field. As
could not do without the COOL facilities, we decided to integrate one of these language
COOL/C++ object.

Prolog was chosen for several reasons. First of all, we need a high-level interp
language to provide our agents with sufficient evolution capabilities. Thanks to their uni
data and program representation, Prolog programs can easily exchange knowledge as
know-how, by adding communication predicates. Within our model, this facility allows
new procedures or old procedures changes to be propagated to the agents. This way, ag
dynamically upgrade themselves, without interrupting their functioning. Besides,
technique is also suitable in a heterogeneous environment.

Moreover, Prolog gives a common communication language base which is share
every agent. Prolog is a very efficient support for the definition and interpretation of
languages that may be designed for our specific needs (e.g. constraints language definit
interpretation for service negotiations). At last, our agents benefit from the unification en
in order to implement some more or less clever reasoning.

A multi-agent model for Human-Computer Cooperative Work has already been ca
out in the IMAGINE [7] Esprit project. It has resulted in the development of a para
Prolog(4) based multi-agent environment and tool-box. The approach is very near ours: m
both the Computer Supported Cooperative Work research, which aims at assistin
cooperation between human agents by the use of computer resources, and the
anthropomorphic cooperation models, so as to make it easier for the users and the appli
to interact, cooperate, by integrating them into a unique model. But this work does not b
from the support of an object-oriented distributed system such as COOL.

4. IC Prolog II



a
he art
h an
ead to
tep is
ion on

r in
s

uctor
ame.

s also
ethod

offer
sting,

and
lly, it
e also

t

to a
r
ciated
n be
f the

since
rther
3.3 Prolog Upgrade for Multi-Agent systems

3.3.1 A Prolog interpreter in a COOL object

PUMA results from the integration of an Edinburgh-type Prolog interpreter into
COOL object. It is important to note that our main concern was not to choose a state of t
Prolog implementation but just to prove the feasibility and the attractiveness of suc
approach. Neither were we interested in the communicating Prologs as we wanted inst
take advantage of our object-oriented communication layer. Nevertheless, a further s
needed to determine the most suitable logic programming language. The experimentat
our current system will make this study easier.

The first point of view is to consider PUMA as the integration of a Prolog interprete
a C++ object, in a distributed environment. The basicpuma class holds the complete acces
and control interface to the Prolog kernel but does not define any activity. Its constr
method takes two arguments: the symbolic name of the object and the initial Prolog file n
This class is typically bound to be used by operational classes through inheritance. It i
likely to be used directly to create a Prolog server object, either reachable through m
invocation or by running its creation reflex (if it is defined in its initial file).

Two classes are derived from thepuma class. Theinterp class defines an interactive
interpreter activity and its instances behave exactly like Prolog interpreters that
embedded COOL features through new predicates. This class is quite useful for te
observing, and perfecting otherpuma objects and, to a certain extent, even non-puma COOL
objects. Theagent class defines a generic agent activity which consists in repeated
continuous calls to a particular predicate representing the elementary activity step. Typica
consists in reading and processing one message -if any- from the mail-box. There may b
an individual task to run but each step should be as fast as possible(5) in order to keep the agen
available enough and to avoid a mail-box overflow.

At last, anyCOOLderived class can be automatically and almost transparently linked
private PUMA agent by inheriting from theMASobject class. This agent is available fo
synchronous/asynchronous invocations and automatically follows the object it is asso
with when it migrates. Some creation, migration and destruction Prolog reflexes ca
programmed for the agent. The use of this class is related to the projection principle o
system resources in a homogenous agents universe.

3.3.2 The extended Prolog dialect

PUMA may be also considered as the integration of COOL in a Prolog language,
almost every COOL feature is embedded in new system predicates (see [14] for fu
details). Most of them are dedicated to communication:

• symbolic naming service (myname/1, vanish/0, appear/1, available/1),
• asynchronous communication with group features (send/2, receive/1, functmode/2,

broadcast/2),
• group management (addtogroup/1, mygroups/1, quitgroup/1),
• migration (migrate/1, follow/0),
• synchronous communication (phone/1,ringup/1, ringup/2, accept/0, refuse/0,

hangon/1, hangup/0),
• dynamic COOL object - typicallypuma object - creation (create/3),
• C++ level synchronous invocation (interrupt/1, ireturn/1).

5. an auxiliary agent may be dynamically created to manage a long lasting task.



ts. As
OL

e

eive
e, or
ations

very

ase,
which

some
butes
typical

voked
ce, this
point

old
The

e
an
gent.
ay be
by

f two
ts, by
room
cific file
vation
able to
to the
A specific advantage of the Prolog approach appears when migrating active objec
a matter of fact, activity migration is a complex issue which is not solved by COOL: the CO
object activity is restarted from zero after each migration. But, with apuma object, migration is
transparent for any Prolog program that calls themigrate/1 predicate, thanks to the Prolog stat
save/restore feature.

3.3.3 Cooperation between the C++ and Prolog levels

This double faced integration results in the possibility for the programmer to conc
compound objects whose activity is a C++ program making Prolog calls from time to tim
a Prolog program calling some C++ procedures, or the combination of both. These invoc
may be either synchronous or asynchronous thanks to the COOL features, thePUMAclass
interface and the new predicates. From a general point of view, these facilities are
interesting simply because these languages suit different tasks.

4. Implementing the model

4.1 A multi-agent meeting room reservation system

We will now describe the implementation of our model in an actual and simple c
using the tools we have just presented. It consists in a multi-agent reservation system
uses two main agent types: theroom agents and theuser agents.

Each meeting room is exclusively represented by a private agent which maintains
information about its structural attributes (equipment, size, place...) and conjunctural attri
(reservations planning, scheduled repairs...). The agent is the complete interface to the
meeting room services: reservation and cancellation.

When a user wants to reserve a meeting room, the corresponding service can be in
via its user agent which manages to contact the right servers (i.e. the room agents). Hen
agent is not only in charge of representing the user in the system, but it is also the entry
towards the whole available services set.

4.1.1 The agents

Each user and room agent is apermanentagent as it represents a resource. It has to h
a minimal user interface to allow administrators to move it onto another site, or to kill it.
agent + control interface compound entity is implemented with theinterface class which
inherits from theMASobject class. This results in the definition of two parallel activities: th
agent activity - typically a Prolog program - and the interface activity, typically waiting for
event from the user. The control interface also allows users to invoke the underlying a
Each agent grants access to a specific set of system wide or local services. A service m
either internal or external, depending on whether the agent can execute it by itself or
invoking another agent.

Each permanent agent loads a particular Prolog file which contains the definition o
internal services: the agent attributes viewing service and editing service. Room agen
loading a specific Prolog file, gather new internal services such as planning consulting,
reservation and cancellation. As far as user agents are concerned, they load another spe
which defines an internal memento service, but also two external services: room reser
and reservation cancellation. Thanks to the Prolog declarative representation, agents are
modify their services or learn some new services dynamically and then to propose them
interface.



cial
agent

there

nt but
user
rary
ks to

many
om

s, nor

on and

ation
nts. To
rticular
pecify
ctures
vers.
elong
an be
d new

s the
and

ws the
rhead
ise

which
: the
reduce

ontract
ents

main
d of
of its
turns a
Sometemporaryagents are dynamically created in order to comply with some spe
tasks, when a service takes a long time or needs migration to be executed. This kind of
need not have any user interface and it is simply made of anagent class object and a specific
sequence of Prolog files. As it is specialized in the domain of the task it must carry out,
are many derived types of temporary agents.

For instance, the memento consulting service is an internal service for any user age
it is run by a dynamically created auxiliary agent. Otherwise, since this service is
interactive, it would disturb the agent’s functioning. When running the service, the tempo
agent gets the information it needs by directly accessing its creator’s Prolog kernel, than
the synchronous invocation predicates. This technique allows the parallel execution of
local internal services, without replicating information. It prevents the system fr
redundancy and the resulting memory waste and consistency problems.

4.1.2 The negotiation language

Neither the uniform representation of the system resources with client/server agent
the availability of a common language (Prolog) are enough to create a realintegrator principle.
It is necessary to introduce system-wide shared semantics; otherwise, any communicati
then any cooperation attempt is illusory.

Consequently, as the service abstraction is the key element of our cooper
conception, being able to precisely describe the expected service is essential for the age
face this issue, agents share semantics for a given set of symbols to represent pa
services and attributes. They know a common constraints expression language to s
constraints on these attributes. They also know the functioning of some dedicated stru
and associated protocols which aim at providing servers with clients and clients with ser

Our constraints language allows us to specify whether or not an attribute should b
to a set or an interval. The Prolog generic constraints solving engine we implemented c
enriched by each agent to solve special cases by introducing default constraints an
domain dependant rules.

Moreover, the language takes into account a satisfaction criterion which enriche
“or” notion with ordered preferences. Satisfaction is computed from a Prolog procedure
the computed values of some attributes. Thus, this language is quite expressive and allo
formulation of requests as complex as “reserve a room for 10 persons, with an ove
projector, from 8:30 AM to 11:00 AM, preferably on the first Monday of January 95, otherw
on another Monday of January 95”.

4.2 A cooperation protocol example

In the system we are presenting, cooperation is based on a special group structure
relies on the Chorus group communication features. We will describe two special points
structure management and the associated server quest protocol. Both are designed to
the number of messages in order to avoid the drawbacks of some protocols such as the c
net protocol [12]: communication network overload, agents’ mail-boxes overflow, ag
message processing overhead.

4.2.1 The artisan group structure management

The structure we implemented consists in making the agents from a given do
maintain a kind of an artisan association which aims at satisfying the clients instea
competing. As soon as a room agent is created in the system, it informs the room group
existence by broadcasting a declaration message. Then, each member of the group re



olds the
agent

butes.
g the
ment

the

es 2n
n if the

are n
is not
both

ervice
to one
room
g

to put
ting a
’s
uctural
lient
r the
rolog
plete

tural

ers for
es the

read
ion is
s the
y for a
t the
ication

look
raints.
message so as to state their adherence to the group. Since each declaration message h
structural attributes (surface, equipment, place...) of the sender agent, each room
permanently knows the other room agents and their associated structural attri
Conjunctural attributes (e.g. reservations planning) are not transmitted to avoid misusin
group broadcast facility. Nevertheless, the good functioning of this structure manage
relies on two assumptions:

(1) the artisan group is slowly dynamic, i.e. the creation, removal of a member and
evolution of its structural attributes are uncommon phenomena;

(2) the number of members is limited.
When there are n members in a group, the declaration of the (n+1)th member caus

messages to be sent. n of these messages are sent within the same broadcast. Eve
broadcast cost is difficult to evaluate since it depends on the network type, there
individually sent messages however, which come in the same mail-box. If assumption (2)
met, a mail-box overflow may occur. Generally speaking, as we allow data replication,
assumptions insure that maintaining a satisfactory level of consistency is not too costly.

4.2.2 Invoking the artisan group structure

As the members of an artisan group know each other, it is no use broadcasting a s
request on the group. When a user agent wants to reserve a meeting room, he just tells it
room agent. As the client is not supposed to know any server in advance, it invokes the
communication group using the Chorus groupfunctionalmode. This mode consists in sendin
a unique message to a random member of the destination group.

Since the user agent is not an expert in the room reservation domain, it is not able
a complete service request into words. Therefore, the room agent replies by crea
temporary agent, a kind of acommercial agent, whose mission is to manage with the client
request. The commercial agent copies the room agents list and their associated str
attributes from its creator by directly accessing its Prolog kernel. Then, it migrates to the c
site and interactively builds a complete service request with the user. It asks him/her fo
main constraints but also directly gathers some information from the user agent’s P
database. Thus, the physical and logical distribution of the problem is respected: the com
request is built by an expert agent coming from a remote site.

Then, the commercial agent lists the relevant rooms according to their struc
attributes, and sorts the list according to the satisfaction criterion(6). Finally, the commercial
agent successively contacts the potential servers as long as it receives negative answ
unavailability matters. When a server accepts the request, the commercial agent giv
service contract to the client agent which informs the user and records the information.

As a result, our server quest protocol is clearly optimized: communications are sp
over time with few messages and no broadcast. Although the commercial agent migrat
rather costly, it has to be underlined that it takes place only once. Moreover, it prevent
negotiation phase from generating many messages that would have been necessar
remote interaction between the user and the commercial agent. At last, the fact tha
commercial and the client agents are in the same address space allows fast and commun
system load independent interactions.

4.2.3 Support for other structures

The artisan group structure is dedicated to small groups of servers. But a client may
for a server which doesn’t necessarily belong to a group but just matches several const

6. The satisfaction criterion defaults to a best fit between the needs of the client and the room attributes.



hose
user
group

roup
anent
ific set
nd
ctory
ysing
rarely

mpty
tem)

horus
the
onger
rious

of a

As a
ch

fills
larly
es on

nted
nted
and

wer
an

n of
ing
lving
omy,
d be

ed
be
vice,

.

For instance, a mail service should make it possible to reach any member of an office w
car is red, in order to tell him that the lights are on, but without disturbing everybody. The
agents are suitable to hold such information as structural attributes, but the artisan
structure does not fit a system-wide search.

To cope with this issue, we propose the creation of a directory agents artisan g
which implement the “seek agent” service. Each of these servers registers the perm
agents with their structural attributes, depending on whether these attributes meet a spec
of constraints (thefilter). A directory agent may split if its database becomes too big, a
transform into two more specialised directories, according to a taxonomy process. A dire
agent may also replicate and move (see a model for automatic positioning in [3]), by anal
the main sources of the requests. Directory agents may also merge if they are small and
invoked. Consequently, we can imagine introducing a unique directory agent with an e
filter and observe the logical (filters specialization) and physical (positions in the sys
emergence of the directory agents group.

4.3 Practical concerns

The room reservation system and the artisan group structure was run on three C
micro-kernel based PC(7) and showed the great efficiency of the group protocol and
communication system which is integrated in the micro-kernel. It was also tested on a str
hardware configuration (SPARCstation 10) which offers more power but introduces a se
communication bottleneck, as it still runs a Chorus simulator on top of UNIX instead
native Chorus micro-kernel based system.

The Prolog kernel is compiled as a library and is included in every address space.
result, the sizes of theagent and interp classes (cf. 3.3.1) do not exceed 17K. For ea
object, dynamic memory allocation essentially springs from the Prolog database which
about 100K. Consequently, a PUMA object creation or migration is rather costly, particu
for memory concerns. On the other hand, it has to be outlined that the Prolog activity go
through migrations.

5. Conclusion

Within the Computer Supported Cooperative Work domain, this article prese
PUMA, a Prolog based layer which benefits from the support of the COOL object-orie
distributed system. We introduced a multi-agent model for the office information systems
we illustrated it with a practical application. We wanted to show the feasibility and the po
of a collaboration between a compiled language (low-level efficiency, control) and
interpreted language (dynamic aspects, expressiveness).

The main advantages we found from Prolog are the uniform representatio
knowledge and know-how, the ability for a program to evolve, the support for defin
languages, and the unification process to implement an evolutionary constraints so
engine. Some reasoning needs were presented in terms of taxon
specialization/generalization, automatic positioning. Learning capabilities also shoul
introduced in some agents to foresee the behaviour of the resources they represent.

As a matter of fact, PUMA is a first step towards the introduction of Distribut
Artificial Intelligence in the office information systems, and there is still a lot of work to
carried out: development of other applications (directory agents group, intelligent mail ser

7. These computers are 66 MHz 486 PC, with 20 Mbytes RAM, running CHORUS/Fusion for SCO UNIX



ing
d in

n.
ter.

tive)

e,

tion

ent.

es.

a
2

ent.
evolution of CIDRE), evolution of COOL, choice of the most suitable logic programm
language, introduction of more “intelligent” features... We will be more and more involve
studies in these areas.

ACKNOWLEDGMENTS

This work was led in collaboration with Patrice Enjalbert from LAIAC - Université de Cae
Special dedication to Christophe “tof” Trompette, the originator of the first PUMA interpre

REFERENCES

[1] Basic Reference Model of Open Distributed Processing: non-normative (descrip
specification of trader.ISO/IEC JTC 1/SC21 WG7 N, Standards Australia 1993

[2] Michel Barat, Jean Erceau.Utilité et utilisation d’un principe intégrateur dans un outil de
conception de systèmes complexes multi-experts.2ème congrès européen de systémiqu
vol. III pp 860-869. Prague, october 1993.

[3] François Bourdon.The automatic positioning of objects in COOL. IEEE/CS, 14th
International Conference on Distributed Computing Systems, Poznan, june 1994.

[4] Jean-Marc Deshayes, Vadim Abrossimov, Rodger Lea.The CIDRE distributed object
system based on Chorus.Proc. of TOOLS’89.

[5] Marc Desreumaux.Pourquoi les entreprises ont-elles besoin de systèmes d’informa
flexibles ?Tome 7, 1er congrès biennal AFCET, Versailles, june 1993.

[6] Jacques Ferber.BRIC : essai de mise en perspective d’une méthodologie multi-ag
Journée d’étude AFCET “méthodes orientées agents”, Paris, september 14th, 1994

[7] Hans Haugeneder.IMAGINE Final Project Report.ESPRIT project 5362, IMAGINE
Consortium

[8] Rodger Lea, Christian Jacquemot, Eric Pillevesse.COOL: system support for distributed
programming.Communications of the ACM, Vol.36, No.9, 1993.

[9] Claire Lefèvre, Claire Beyssade.Système multi-agents et modalités épistémiqu
Premières journées francophones IAD & SMA, Toulouse 1993

[10] V. Lesser, D. Corkhill. Distributed problem solving.Encyclopedia of Artificial
Intelligence, Vol. 2 (1987), 245-251

[11] Yoav Shoham.Agent-oriented programming.Artificial Intelligence 60 (1993), Elsevier,
51-92

[12] R.G. Smith.The Contract Net Protocol: High-Level Communication and Control in
Distributed Problem Solver.IEEE transactions on computers Vol. C-29, No. 1
(december 1980), 1104-1113

[13] R.A. Thiétart.Ordre et Chaos dans les Organisations.Journée d’étude AFCET “Les
Systèmes d’Information, Autonomie et Chaos”, Paris, november 24th, 1993.

[14] Christophe Trompette.Etude de modèles de négociation dans un univers multi-ag
Rapport de stage de DEA, Université de Caen, september 92.


	1. Introduction
	1.1 Autonomy and integration of the information system
	1.2 Towards tools and techniques

	2. A multi-agent model
	2.1 The agent-oriented approach
	2.2 Making a uniform system

	3. A multi-agent layer
	3.1 An object-oriented distributed system: COOL
	3.2 Introduction of a high level language: Prolog
	3.3 Prolog Upgrade for Multi-Agent systems
	3.3.1 A Prolog interpreter in a COOL object
	3.3.2 The extended Prolog dialect
	3.3.3 Cooperation between the C++ and Prolog levels


	4. Implementing the model
	4.1 A multi-agent meeting room reservation system
	4.1.1 The agents
	4.1.2 The negotiation language

	4.2 A cooperation protocol example
	4.2.1 The artisan group structure management
	4.2.2 Invoking the artisan group structure
	4.2.3 Support for other structures

	4.3 Practical concerns

	5. Conclusion
	Acknowledgments
	References

