
An OMG standards-based toolbox for agent mobility and interoperability1

ts in
gents

tem
rt,

ards
ility
ible
res

code
ing
ents

uit
to

ny
here
ting
r to

ndle
cale
her
MobiliTools: An OMG Standards-Based Toolbox for
Agent Mobility and Interoperability.

Bruno Dillenseger
France Télécom R&D (formerly known as Cnet), BP98, F-38243 Meylan Cedex, France

Abstract: One of the keys to success for applications of mobile and/or intelligent agen
large-scale open systems such as Internet is the ability of heterogeneous a
to cooperate and negotiate, and meet if they are mobile. This heterogeneity
support requires the adoption of standards at the underlying distributed sys
level to support interoperability in agent management, mobile agent transpo
and agent communication transport. This paper shows how both OMG stand
and a modular architecture based on three kinds of component — agent mob
kernel, agent communication tools, and agent activity kernel — makes it poss
to build a variety of heterogeneous mobile agent platforms with ad hoc featu
while preserving interoperability.

1 YET ANOTHER JAVA MOBILE AGENT
PLATFORM?

1.1 A new paradigm for distributed systems

Classical techniques for distributed systems are based on client/server,
on demand, and remote evaluation paradigms, which finally result in mov
code, and/or data, and/or control, as described in [14]. Now, mobile ag
bring everything together into a new paradigm.

This paradigm has been introduced by Telescript [15] throw theremote
programming concept, to reduce network load and latency, and to s
temporary network connectivity. As underlined in [9], there is little chance
find a “killer application” of mobile agents, but the paradigm is nice for a
distributed application spread in a large-scale dynamic open system, w
adaptation capability, through dynamic re-distribution of a set of coopera
agents, is a key to coping with changing hosts and network conditions, o
optimize the execution of distributed services.

But this nice anthropomorphic paradigm may not be so easy to ha
practically. Besides security issues, which are critical to real large-s
applications, transparency, reliability, scalability and interoperability are ot
key challenges.

2 (Bruno Dillenseger)

ed
ities,
his
al
not

cess

and
ify

(or
eeds
or
iour
ct,
nces

6],
f its

for
y per
ds of

to
igm,
be

rties
2],
ted

cific
(e.g.
1.2 Limitations of today’s mobile agent platforms

1.2.1 Transparency

Today’s typical mobile agent platforms are built on a centraliz
programming language, enhanced with remote communication capabil
and finally completed with mobility features (e.g. Java-based platforms). T
final add-on of mobility deeply changes the behaviour of the origin
programming framework. For instance, many useful JDK packages are
designed for mobility, and transparency to mobility issues arise for any ac
to resources such as threads, files, sockets...

This is the reason why Java-based frameworks include specific models
tools for agent activity, communication and mobility, and spec
programming restrictions. For instance, creating threads is discouraged
forbidden) by Voyager [20] and Grasshopper [17], because the platform n
to tightly manage the agent activity. In some platforms, insufficient
disregarded restrictions can result in unspecified and indeterminist behav
if an agent moves while it is involved in communication. As a matter of fa
communication has an impact on agent activity, and mobility has conseque
on both communication and activity.

Full transparency would consist in having strong mobility as defined in [
maintaining not only the agent state, but also the state of its activity and o
bindings to resources, including on-going communications.

1.2.2 Scalability

Both activity and communication models are of great importance
scalability. Java-based platforms that create (at least) one thread of activit
agent are examples of non-scalability if one imagines hundreds or thousan
agents needing to meet in one place.

Communication tools are also determining in scalability. Agents need
communicate locally, to take advantage of the remote programming parad
but also remotely, as explained in [13]. Remote communication may
implemented in a number of ways, with more or less state-of-the-art prope
in terms of persistence, reliability, guaranty of delivery and causality ([
[13]). Unfortunately, these outstanding properties typically rely on distribu
algorithms introducing scalability limitations.

1.2.3 Interoperability

Last, but not least, it must also be considered that mobile agents’ spe
properties are dedicated to large-scale, dynamic, open distributed systems

An OMG standards-based toolbox for agent mobility and interoperability3

high-
s a

to

re
e and
of

no
sages
d in a
k.
ed
t.
SIF

be

ols,

ent
gent
nd
one
be

rd
rms,

ation
ical
Internet). In such a context, heterogeneous mobile agents need a common
level communication language to understand each other, as well a
standardised distributed execution and communication infrastructure
interoperate.

FIPA’s [16] and KQML-based Agent Communication Languages a
emerging standards for making agents understand each other, negotiat
cooperate. But high-level communication also requires a lower level
interoperability, on the communication transport level. Unfortunately,
standard communication infrastructure actually emerges to transport mes
between heterogeneous agents. Mobile agents also need to move aroun
standardised infrastructure, dealing with a common conceptual framewor

Today’s mobile agent platforms typically come with specific integrat
frameworks making it difficult to introduce interoperability suppor
Nevertheless, Voyager’s CORBA support and Grasshopper’s MA
compliance are encouraging effort examples towards interoperability.

1.3 MobiliTools’ specific approach

MobiliTools is a set of CORBA-based Java tools for mobility that can
used separately. The specific architecture relies on two main principles:
1. a clear separation between object mobility support, communication to

and activity management;
2. use of standard middleware for agent and communication transport.

Principle (1) is motivated by the idea that there is no universal mobile ag
framework. It is preferable, instead, to create a number of interoperable a
frameworks by choosing and combining different communication tools a
agent activity schemes, on top of a mobility kernel. For instance, if at least
of the communication tools is independent from the mobility kernel, it can
used by any other agent platform or software to interoperate.

Principle (2) enforces interoperability by choosing a standa
communication layer, not only between agents, and between agent platfo
but also between agents and legacy applications. Moreover, communic
middleware comes with useful generic services and tools meeting typ
distributed systems’ needs.

Mixing these two principles results
in the architecture shown by Figure 1.
Any component may be replaced or
reused to build a variety of agent
frameworks with a common support for
agent and/or communication transport.

CORBA

Figure 1: MobiliTools architecture

mobility

activity

services

communication

4 (Bruno Dillenseger)

for
ss of
ing

result
and
ome

as
tion
ed. All
e re-
ny

face
n,

nts,
[3]
h as
ing
the

ey
ution
ion,

n
orms.

that
nt
2 OMG STANDARDS AND AGENT TECHNOLOGY

2.1 Corba

OMG’s Common Object Request Broker Architecture makes it possible
distributed programmes to perform remote calls on each other, regardle
their programming languages, in an object-oriented manner, while hid
network layers and operating systems heterogeneity. This standard is the
of a consortium grouping the major companies in information technology,
has several commercial and free implementations. CORBA support in s
web browsers and in Java 2 is a sign of maturity.

CORBA comes with common services for distributed systems such
localisation (naming service, trader), and event-oriented communica
(event service). Persistence, transactions, and security are also address
these topics are of great interest for mobile agents, and everything can b
used (as is, or as implementation “templates”), without enforcing a
programming language (provided that the mapping exists from the Inter
Definition Language to the target language), while relying on a well know
specified and widely available standard.

CORBA is an opportunity for interoperable basic management of age
transport of mobile agents, and transport of agent communication.
describes several agent platforms developed on top of middleware suc
CORBA. These platforms show in particular how several programm
languages may co-exist to allow several programming levels, and how
middleware can be fully hidden to the agent programmer.

CORBA implementations do not actually support object mobility, but th
can be used for every stationary component in a system of agents: exec
environments hosting agents, infrastructure for agent communicat
directory service...

2.2 Mobile Agent System Interoperability Facilities

OMG’s first contribution to agent technology is the MASIF specificatio
[10], dedicated to the interoperable management of agents and agent platf
MASIF’s framework is based on the following concepts:Agentsautonomously
act on behalf of a person or an organization called anauthority. Agents are
executed inplaces, hosted byagent systems(see Figure 2).Mobile agentshave
the ability to move from place to place, between agent systems, provided
their agent system typeis recognized by the destination agent system. Age
systems are also bound to an authority, and may be grouped into aregion if
they are bound to the same authority. Agents are given a globally uniquename
resulting from the triplet {authority, agent identity, agent system type}.

An OMG standards-based toolbox for agent mobility and interoperability5

ce
ents
, and

.3
an
uage

ary
at
ent
ent
’s
tion

ed
ent
y

ity,
ion,
This framework is managed via two CORBA interfaces. Interfa
MAFAgentSystem must be implemented by agent systems to manage ag
(create, suspend, resume, terminate), to receive migrating mobile agents
to transfer agent classes. InterfaceMAFFinder is dedicated to registration and
lookup of agents, places and agent systems.

2.3 CORBA 2.3, OMG Agent Working Group

OMG’s interest in mobility and agent technology is growing. CORBA 2
specifications are contributing to object mobility support by including
object-by-value feature that makes it possible to pass programming lang
objects as invocation parameters.

As far as agent technology itself is concerned, MASIF is only a prelimin
step in OMG’s work. The Agent Working Group (AWG) [19] was created
the end of 1998, in order to open a forum for educating OMG in ag
technology, and develop an architectural framework supporting ag
technology in a compatible and complementary way with OMG
specifications. The AWG is also interested in coordinating standardisa
work with other consortia in the agent field, such as FIPA.

The AWG started to write an “Agent technology green paper” [11], issu
a Request For Information on “Agent technology and Object Managem
Architecture” in 1999, and is currently working on an “Agent Technolog
White Paper and RFP Roadmap” [12]. RFPs will focus on interoperabil
agent communication language, security, mobility, as well as distribut
robustness and scalability.

Common MAFFinder

Figure 2: MASIF conceptual framework, with MAFFinder and
MAFAgentSystem interfaces.

MAFAgentSystem

Object Request Broker

MAFAgentSystem

Agent system
agent

place

Object
Services

directory service
for agents, agent
systems, places

6 (Bruno Dillenseger)

ice
bile or

in
the
m
ling
the
nd

ther

ents
fault

ener
tion
om
an
e is

ell
agent
er to
its
nous
ore

de).
r each
ode
3 THE AGENT COMMUNICATION TRANSPORT
SERVICE

3.1 Overview

The Agent Communication Transport Service (ACTS) is a CORBA serv
for transporting messages between heterogeneous agents, whatever mo
not, CORBA objects or not. Accordingly to the decomposition suggested
Section 1.3, the ACTS is a communication tool, independent from both
mobility kernel and the activity model. Although it is independent fro
MASIF, the ACTS may be considered as a complement enab
interoperability between agents for remote communication, through
definition of extra interfaces. A detailed description of the ACTS can be fou
in [4]; we present the basics below, and then compare the ACTS with o
related work.

3.1.1 How it works

The ACTS is based on one or several servers, playing the role ofmessage
port factory. Basically, message portsare stationary FIFO buffers where
agents can add and retrieve messages of CORBA “Any” type. Note that ag
need not be CORBA objects. A message port can be switched from this de
store modeto forward mode, by declaring amessage port listener. A listener is
a CORBA object that receives pending and incoming messages. This list
may be invalidated, either explicitly, or as soon as a CORBA communica
failure occurs with this object. Such a communication failure may spring fr
a loss of network connectivity with the listener, or may be caused by
obsolete CORBA object reference due to the listener mobility. No messag
lost, and the FIFO order is maintained anyway.

3.1.2 Typical ACTS usage

The ACTS may be distributed on a number of servers running on w
connected nodes (ACTS servers can be considered as e-mail servers). An
may have one or several message ports in different network areas in ord
improve communication performance and/or reliability. According to
specific constraints, an agent may choose either a pure asynchro
communication model, where it polls its message port (store mode), or a m
"reactive" model where it gets incoming messages on the fly (forward mo
In the latter case, the new reference of the listener has to be registered afte
move in order to keep the "reactive" behaviour. Note that the forward m

An OMG standards-based toolbox for agent mobility and interoperability7

tes a

va.
nced

a
with

p of

the

g

d on

nt

ent-
ique
each
ast

rward
with
by
should be handled very carefully, since each forwarded message crea
thread of activity in the listener.

3.1.3 Customization: ACTS personalities

The ACTSpersonalitieshide the CORBA infrastructure and the ACTS
interfaces, while providing easy-to-use communication utilities for Ja
ACTS personalities also come with enhanced transparency support, adva
communication features, and higher level addressing.

The ACTSMailbox personalitywraps message ports into Mailbox Jav
objects. Mailboxes are designated with high-level addresses, consistent
MASIF’s region concept (agent_name@region_name). Multicast and unicast
features are supported by addresses transparently targeting a grou
mailboxes in a given region (group_name@region_name). The CORBA
naming service is used to register and find the ACTS servers and
mailboxes’ message ports:
– name “/MAF/region_name/acts/factory” for ACTS servers;
– name “/MAF/region_name/acts/mailbox/mailbox_name” for message

ports bound to ordinary mailboxes, or arbitrary unique names in namin
context “/MAF/region_name/acts/mailbox/mailbox_name/” for message
ports bound to group mailboxes.
Section 4.3 details the specific naming service usage for scalability.
The ACTSLogged Mailbox personalityis a Mailbox extension providing

the programmer with communication tracing tools and event ordering base
a Lamport Clock mechanism [8]. The ACTSFIPA personalityis a FIPA-
oriented use of the ACTS, compliant with FIPA’98 specifications for Age
Management and agent-agent interactions [5].

3.2 Further discussion on the ACTS and communication
issues

3.2.1 Agent communication schemes

[1] identifies two communication schemes in agent-based systems: ag
to-agent communication where partners are addressed by globally un
identifiers, and anonymous communications where partners do not know
other (event model). Through the Mailbox personality and its multicast/unic
enhancement, we see that the ACTS supports both schemes, both in fo
and store mode. Another way to achieve this is to mix the message ports
the CORBA event service, but the event service can’t be used directly
agents because of their mobility.

8 (Bruno Dillenseger)

ving

e.
ne.

ernet).
uch

any
of

t be

ents
their

shot
n and
be
ility

ther
t). The
hen a
ent’s
ded
cause
to be

.3,
n,
nt
3.2.2 Communication delivery

Three basic techniques can be used (and mixed) to reach a mo
destination:
1. use a directory which binds constant names to changing locations;
2. broadcast;
3. replace the mobile agent by a forwarding “ghost” on each move;

Technique (1) is often criticized for it relies on a centralized servic
Nevertheless, this technique is currently of common use in mobile pho
Applicability domain of technique (2) is typically the LAN, where
broadcasting does not necessarily generate extra messages (e.g. Eth
Larger-scale broadcast is a problem since it typically consumes too m
network bandwidth and processing time in all the recipients (and/or in
intermediate communication element). Technique (3) comes with risks
reference chain breaking and forwarders proliferation. Moreover, it can no
applied when the reason for mobility is a node or network link shutdown.

All these techniques can be defeated in the case of highly mobile ag
because messages may be routed permanently and never reach
destination. [13] presents a solution derived from the distributed snap
algorithm. It is based on a synchronisation between message propagatio
moving agents on communication links. However, this work needs to
continued in order to take network and node faults into account, and scalab
is likely to be a problem.

The ACTS approach is different: an agent is always addressed by o
agents through a single reference that never changes (the message por
only reference that needs to be updated is the reference to the listener w
message port is operated in forward mode. Doing this update is of the ag
responsibility. In the special case of a highly mobile agent, it is recommen
not to use the forward mode, not because messages could be lost, but be
messages might never reach the moving listener. The store mode seems
the right communication model in this case.

4 THE SIMPLE MASIF IMPLEMENTATION

4.1 SMI overview

Accordingly to the decomposition of agent platforms given in Section 1
SMI implements a mobility kernel in Java. Starting from MASIF specificatio
SMI aims at providing a generic, light-weight and well-specified environme
for mobile Java objects.

An OMG standards-based toolbox for agent mobility and interoperability9

ent

as a
y is

4.3).

n
g the

ject
f
.2).
e
ate
, and
tem

d and
tart,
le to

fter
4.1.1 Agencies

An agency is an execution environment for mobile agents, called ag
system in MASIF’s terminology. Basically, they are instances of classAgency

running in a Java Virtual Machine. Each agency belongs to a region, h
name (unique in the given region), and is bound to an authority. An agenc
also a CORBA server implementing MASIF’sMAFAgentSystem interface. Its
CORBA object reference is registered in the naming service (see Section

Agents can be managed through theMAFAgentSystem interface and
methods of classAgency . Operations include creating and terminating a
agent, suspending and resuming an agent activity, moving an agent, listin
names of hosted agents, and getting information on a local agent.

4.1.2 Mobile objects/agents

Agencies have methods for creating and managing any Java ob
implementing theMobileObject interface. This interface mainly consists o
call-backs related to the lifecycle of mobile agents (see Section 4
MobileObject implementations also have to implement th
java.io.Serializable interface since Java serialization is used to gener
mobile agents’ states. As specified by MASIF, an agent resides in a place
has a unique name combining an identity, an authority and an Agent Sys
Type identifier.

4.2 MobileObject lifecycle

The design of interfaceMobileObject is a straightforward mapping of the
MASIF framework: agents may be created, moved, suspended, resume
terminated. Agents have to be informed when such lifecycle events s
succeed or fail (see Table 1), not only to properly react, but also to be ab

deny permission: an agent can refuse creation, mobility, or reinstallation a
a move, by throwing an exception in the corresponding call-back.

Table 1: Agent lifecycle management andMobileObject interface.

Agency method involved MobileObject call-back(s)

createAgent afterBirth

resumeAgent resume

suspendAgent suspend

moveAgent beforeMove afterMove afterMoveFailed

terminateAgent beforeDeath

10 (Bruno Dillenseger)

ation
of a

ent
ing

on

ice,
on:

nd via

eck
with
gs for
F/”
th
ver.
e.g.
le for
vers.

nt

eir
ly
ent
IF
the

nt
ss
For instance, methodmoveAgent() of classAgency involves a number of
steps which can fail for various reasons: the specified agent or the destin
agency doesn’t exist, the destination agency can’t be reached because
communication problem (network, CORBA, naming service), or ag
de/serialization has failed. But the agent may also abort the move by throw
an exception before (inbeforeMove()) or during serialization, during or after
(in afterMove()) deserialization. If the move is aborted after the serialisati
step, theafterMoveFailed() call-back is invoked.

4.3 Naming service distributed exploitation

SMI agencies are bound to unique names in the CORBA naming serv
according to a naming scheme extending MASIF’s concept of regi
“/MAF/ region_name/agency/agency_name”. As a result, agencies (like
mailboxes’ message ports and ACTS servers, see Section 3.1) can be fou
high-level deterministic names, helping region interconnection.

A specific naming service administration is required to avoid a bottlen
effect. The first idea is to distribute the naming service on several servers,
one name server per region. Each name server contains the name bindin
its own region, and is federated with the other name servers in the “/MA
naming context. As a result, resolution of name “/MAF/regionA/...” wi
region B’s name server is transparently forwarded to region A’s name ser
To go further on distribution, region names may contain sub-regions (
“regionA/sub-region1/...”). In this case, one name server can be responsib
each sub-region. Note that this distribution also applies for the ACTS ser

4.4 Back to MASIF and interoperability

MASIF specifications practically supports interoperability for basic age
management tasks, through the definition of:
– a common framework of places, agent systems, region, etc.;
– a service for agent, place and agent system registration and lookup;
– an external interface for agent lifecycle.

All these points don’t require a smart interpretation, and th
implementation is quite straightforward. But interoperability is not ful
specified for agent mobility, and is not addressed at all for ag
communication. Since the latter issue is explicitly not in the scope of MAS
(the ACTS described in Section 3 suggests one solution), let’s focus on
former issue. MASIF’s mobility support is based on two operations:
– receive_agent() is invoked on the destination agency to transfer an age

— parameters include the agent profile, the agent state, the agent cla

An OMG standards-based toolbox for agent mobility and interoperability11

he

er

ing
tion
ets,

tion
I’s
ince

ent
easy,

ain
cuss
ming
gine a

dard
er
the
gent

sues,
d for

are

ither
. The
gent
is

nce it
name, and a CORBA object reference to the agent system providing t
agent’s classes;

– fetch_class() is invoked by the destination agency on the class provid
to get the incoming agent’s locally undefined classes.

4.4.1 Agent profile

Heterogeneity management is based on the provisioning of anagent profile.
A profile contains a set of identifiers specifying the agent programm
language, the agent system type, versioning information, and serializa
format. Identifiers are already defined for Java, Tcl, Scheme, Perl, Agl
MOA, AgentTcl and Java object serialization.

SMI naturally gets the Java language and the Java object serializa
identifiers, and is given a free identifier for “SMI agent system type”. SM
policy is to reject agents of any other agent system type trying to move in. S
a dedicated exception is missing, the genericMAFExtendedException

exception is thrown. It could be imagined that hosting an agent of a differ
agent system type but of the same programming language could be
especially in the case of Java. But several implementation choices rem
about de/serialization, class loading and agent lifecycle hooks. Let’s dis
the interoperability issues in the case of Java as a common program
language (in the case of heterogeneous programming languages, we ima
pseudo-agent system switching agents on to the right agent system).

4.4.2 Agent deserialization and classloader

Using standard Java object serialization does not mean that a stan
ObjectInputStream can be used for deserialization. A specific classload
must be provided for each agent in order to fetch missing classes from
specified class provider, using the specified codebase, for the specified a
profile. This classloader must be supplied by a specificObjectInputStream

deserializing the agent state.
There are several other implementation choices about class loading is

which may lead to non-interoperability. For instance, the classloader use
agent deserialization may be quite different if it assumes that classes
transferred as a whole as a parameter ofreceive_agent() , or downloaded on
the fly from the class provider if they are locally undefined.

Missing classes in the destination agent system may be fetched e
always from the same agent system, or from the source agent system
former technique introduces a serious bottleneck, and may prevent an a
from moving from agency B to agency C if the class providing agency A
unreachable. The latter technique may cause a proliferation of classes, si

12 (Bruno Dillenseger)

main
may
uch
but
ctive

g
oing
on

o be
way

rting
es a
ugh

tion
and
ks.
mer
hile
 [2].
ing
, or
ence
nstant
ternal

of an
rently
ing

le to
ding
requires that the agencies keep byte code for hosted agents’ classes. The
issue is scalability, since the amount of byte code stored in each agency
rapidly grow. SMI uses this technique however, because it results in a m
more fault tolerant overall distribution. This has to be tuned and refined,
detecting and discarding useless classes is complicated by Java’s refle
features.

4.4.3 “Internal” interfaces

Finally, the main difficulty for interoperability within a given programmin
language, is that standard hooks must be specified to tell the agent it is g
to move or die, or it has just moved, or it has just been born... A comm
lifecycle interface such as SMI’sMobileObject (see Section 4.2) should be
defined for each language.

Local interactions with the agency and the other agents also need t
specified. For instance, an agent willing to move must be given a standard
to request the move from the agent system it is residing in. Then, suppo
the remote programming paradigm for heterogeneous agents requir
standard mechanism to initiate and handle a local communication tool thro
a standard interface.

4.5 To be added: agent activity models

For the sake of genericity, SMI does not enforce any agent execu
model. Agents are responsible for starting, suspending, resuming
terminating their activity accordingly to the corresponding lifecycle call-bac
Agents may launch a thread of activity, or share a pool of threads. The for
approach fully supports autonomous agent activity, but is not scalable, w
the latter approach is essentially dedicated to event-driven agents, like in

Event-driven activity may be implemented using the reactive programm
model. Such a model consists in splitting execution into logical time slices
instants. Reactive objects react to events, combinations of events, or abs
of events, and generate events that are consumed in the same instant. An i
ends when all events are consumed, and a new instant starts when new ex
events appear.

The benefit of such an approach is that between two instants, the state
agent is stable and very well defined. Then, move requests can be transpa
executed after the end of each instant, without affecting the programm
model. Moreover, work described in [7] has produced a Java prototype ab
run thousands of reactive objects, which is a promising performance regar
scalability concerns.

An OMG standards-based toolbox for agent mobility and interoperability13

s:
nt

ty

se
he
ent
and
priate
ent

nents
ty of
CTS
In
ork

nt
ent

the

r the
d
The

epts
re

orm
ted
5 CONCLUSION

Through the presentation of MobiliTools, this paper practically explore
– the applicability of OMG standards for making interoperable mobile age

platforms;
– how a mobile agent platform can be built as a combination of a mobili

kernel, communication tools, and agent activity support.
Although MASIF brings limited interoperability support, mainly becau

of the “internal interfaces” issue, it is an interesting starting point for t
architecture of mobile agent platforms. CORBA is convenient to implem
the stationary parts of the global infrastructure, responsible for transporting
managing agents and messages. The naming service, used in an appro
manner, provides a scalable directory for high-level location-independ
references.

At last, the approach based on the assembly of independent compo
improves comprehensibility of transparency issues, and leads to a varie
interoperable combinations suited to various needs. For instance, the A
may be used in any mobile agent platform without any other MobiliTools.
the same way, SMI may host any agent activity and communication framew
while managing mobility through theMobileObject interface.

Next steps include tuning and completion in order to fully impleme
MASIF, enhance the communication support, and offer a couple of ag
activity models. Strong mobility support is on the way, on the basis of
reactive programming model.

ACKNOWLEDGEMENTS

The Agent Communication Transport Service has been developed fo
MIAMI project [18], with design contribution from Stefan Covaci an
Alexander Yip. The FIPA personality has been made by Huan Tran Viet.
logged mailbox personality has been made by Anne-Marie Tagant.

REFERENCES

1. J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, M. Strasser: Communication conc
for Mobile Agent Systems. In mobile Agents: 1st International Workshop MA’97, Lectu
Notes in Computer Science, April 1997, Springer, pp. 123-135.

2. L. Bellissard, N. De Palma, A. Freyssinet, M. Herrmann, S. Lacourte: An Agent Platf
for Reliable Asynchronous Distributed Programming. Symposium on Reliable Distribu
Systems (SRDS’99), Lausanne (Switzerland), 20-22 October 1999.

14 (Bruno Dillenseger)

on
n

nd
ile
less

va,

on

e No

m.

tions

kus
TC

, 24

Ref.

In
onal
EE

arch

eral
3. B. Dillenseger: From Interoperability to Cooperation: Building Intelligent Agents
Middleware. Lecture Notes in Artificial Intelligence 1437 (Proc. of IATA’98), Sahi
Albayrak, Francisco J. Garijo Eds. Springer 1998, pp. 220-232.

4. B. Dillenseger, Huan Tran Viet: Towards full agent interoperability. In Proc. of 2
International ACTS Workshop on Advanced Services in Fixed and Mob
Telecommunications Networks. 9-10 September 1999, Center for Wire
Communications, Singapore.

5. FIPA 98 Specification. Foundation for Intelligent Physical Agents (Gene
Switzerland),1998. see [16]

6. A. Fugetta, G. P. Picco, G Vigna: Understanding code mobility. IEEE Transactions
Software Engineering, vol. 24, No 5 (1998), pp. 342-361.

7. L. Hazard, J.-F. Susini, F. Boussinot: The Junior Reactive Kernel. Rapport de recherch
3732, July 1999, INRIA Sophia Antipolis (France).

8. L. Lamport: Time, clocks, and the ordering of events in a distributed syste
Communications of the ACM, July 1978, Vol. 21, No 7., pp. 558-565.

9. Danny B. Lange, Mitsuro Oshima: Seven good reasons for mobile agents. Communica
of the ACM, Vol.42, No 3, March 1999, pp. 88-89.

10.Mobile Agent System Interoperability Facilities Specification. Joint submision: GMD Fo
& IBM Corp., supported by Crystaliz Inc., General Magic Inc., The Open Group. OMG
document orbos/97-10-05 (1997).

11.OMG Agent Working Group: Agent Technology Green Paper. Document ec/99-12-02
December 1999. see [19]

12.OMG Agent Working Group: Agent Technology White Paper and RFP Roadmap.
internet/99-11-01, draft .02, 29 November 1999. see [19]

13.Amy L. Murphy, Gian Pietro Picco: Reliable communication for highly mobile agents.
proc. 1st International Symposium on Agent Systems and Applications, 3rd Internati
Symposium on Mobile Agents, Palm Springs (USA), D.S. Milojicic ed., october 1999, IE
Computer Society, pp. 141-150.

14.J. Vitek: New paradigms for distributed programming. In proceedings European Rese
Seminar in Advanced Distributed Systems, Zinal (Switzerland), march 17-21, 1997.

15.J. White: Telescript technology: the foundation for the electronic market place. Gen
Magic White Paper, General Magic, 1994.

WEB REFERENCES

16.FIPA - http://www.fipa.org/
17.Grasshopper - http://www.ikv.de/
18.MIAMI - http://www.fokus.gmd.de/research/cc/ecco/miami/
19.OMG Agent Working Group - http://www.objs.com/isig/agents.html
20.Voyager - http://www.objectspace.com/

	1 Yet Another Java Mobile Agent Platform?
	1.1 A new paradigm for distributed systems
	1.2 Limitations of today’s mobile agent platforms
	1.2.1 Transparency
	1.2.2 Scalability
	1.2.3 Interoperability

	1.3 MobiliTools’ specific approach

	2 OMG standards and agent technology
	2.1 Corba
	2.2 Mobile Agent System Interoperability Facilities
	2.3 CORBA 2.3, OMG Agent Working Group

	3 The Agent Communication Transport Service
	3.1 Overview
	3.1.1 How it works
	3.1.2 Typical ACTS usage
	3.1.3 Customization: ACTS personalities

	3.2 Further discussion on the ACTS and communication issues
	3.2.1 Agent communication schemes
	3.2.2 Communication delivery

	4 The Simple MASIF Implementation
	4.1 SMI overview
	4.1.1 Agencies
	4.1.2 Mobile objects/agents

	4.2 MobileObject lifecycle
	4.3 Naming service distributed exploitation
	4.4 Back to MASIF and interoperability
	4.4.1 Agent profile
	4.4.2 Agent deserialization and classloader
	4.4.3 “Internal” interfaces

	4.5 To be added: agent activity models

	5 Conclusion
	Acknowledgements
	References
	Web References

