
t
e

a
e
d
d
d
s
ly
t

d
to
rs

ol
es
y.
d

m

d
ey
te
s
g
e

ic
or

y
n
g
d
y

ive

ive
ed
us
ed
r

d
he
ic

ear,
n
e
re,
n

s
is
e
e
l

r
e

nd

Supporting intelligent agents in a distributed environment:
a COOL-based approach(1)

Bruno Dillenseger (+33 31 75 91 39, dillenseger@sept.fr),
François Bourdon (+33 31 75 91 19, bourdon@sept.fr),

SEPT SCE/ARC, 42 rue des Coutures, BP 6243, F-14066 Caen cedex, France.

1. in collaboration with LAIAC, Université de Caen.
KEYWORDS

object-oriented distributed system, agen
programming, Computer Supported Cooperativ
Work, service negotiation, C++, COOL, Prolog.

ABSTRACT

The background of this article consists in
distributed object oriented approach for th
development of logically and physically distribute
applications in the field of Computer Supporte
Cooperative Work. The use of an object oriente
distributed system (COOL) is a first step toward
the implementation of solutions to these natural
distributed problems. But this support is insufficien
to directly implement high-level interactions an
behaviour: the entities have to adjust themselves
a dynamic system where services and serve
appear, evolve, and disappear.

This article introduces both a model and a to
which are designed to enhance the entiti
cooperation ability and autonomous adaptabilit
The model springs from investigations in the fiel
of Multi-Agent Systems and consists in a uniform
representation of every resource of the syste
(hardware, software, user) by agents.

The implementation tool and associate
developments are described in some detail. Th
are based on an enhanced Prolog interpre
integrating the main COOL features: variou
communication modes, active objects, migratin
objects... Our Prolog-based approach is discuss
and illustrated by the implementation of a
distributed application and some gener
multi-agent system structures and protocols f
cooperation.
d

r

d

1. Introduction

By combining the distributed systems technolog
with an object-oriented approach, applications ca
be built as sets of independent and interactin
entities. As these sets may be logically an
physically distributed, this approach is speciall
relevant for many naturally distributed problem
families. The SEPT(1) is typically involved in such
research in the Computer Supported Cooperat
Work field.

Applications about intelligent circulation of
electronic documents [Deshayes 89] or cooperat
editing revealed the necessity of an object-orient
distributed system. So, we adopted a Chor
micro-kernel based distributed system and specifi
COOL [Lea 93], an Object Oriented Laye
integrated to C++.

Now, the key point consists in supporting advance
interactions and behaviour in order to increase t
entities autonomy. They need to adapt to a dynam
distributed system where servers appear, disapp
evolve. The necessity of a high level cooperatio
implies a uniform view and interaction mode to b
shared by every resource (software, hardwa
users) that is available through the communicatio
network.

Definitely, research in the Multi-Agent System
field appear to be relevant to our needs. First, th
leads to a multi-agent model proposal for th
Human-Computer Cooperative Work. Then, w
also need a Distributed Artificial Intelligence too
to implement this model. Although COOL/C++ is a
powerful support for distribution, we lack a highe
level language for matters such as knowledg
representation, communication, reasoning a
evolution capabilities. As a result, we develope
our own tool by mixing Prolog and COOL in C++
objects.

1. joint research lab for La Poste and France Télécom.

ts

al

d

s,
d
],
],
al:
ot
t

ed
r
to
n
o

re
k
the
n
he
.
e

ver
the

nd
It
e
an
e

d

,
e

2. The needs

2.1 Why an object-oriented distributed
technology?

Autonomy increasingly becomes an essential
element for the adaptation of the information
systems to the unforeseeable evolution [Thiétart
93] of the office, whose environment is
geographically distributed. This unforeseeable
evolution forces the information systems to adjust
themselves to the resulting organisational and
operational changes.

We are currently in a transition period
[Desreumaux 93]: depending on the visibility
degree that the applications give about their
functional features, users do not see systematically
monolithic applications any longer. They tend to be
increasingly aware of a system of interacting
objects instead. The role of each object consists in
the available autonomous services that are likely to
help the user to manage his/her tasks.

This visibility becomes essential as elementary
notions of costs control, implied by the autonomy
principle, have to be taken into account by the
users, specially in open distributed environments.
Then, users see the information system as a natural
and coherent interface for the tasks they have to
achieve. It has to be possible for them to use it in
order to:

• know/decide what they have to do;
• seek/archive information;
•negotiate, regroup;
• control/execute a task...

2.2 Why advanced behaviour and
interactions?

Users need a guide to find the most relevant service
among the profusion of autonomous and available
services which appear, disappear and evolve within
the office. This help requires a great deal of
interoperability and implies that the computer
entities rely on a standard interface language which
is supposed to create a minimal semantic universe.
All the agents of the system that are likely to
communicate with each other have to share this
common semantic universe. Thisintegrator
principle was introduced by Jean Erceau and
Michel Barat in [Barat 93].

Beyond the functional representation of the offered
and/or requested services, this search has to feature

•negotiation possibilities to make the reques
suitable for the “market” tender,

• learning (memory) capabilities to avoid
systematic and useless quests, and

•sophisticated communications allowing manu
(human) actions in case of hard negotiations.

3. Towards a multi-agent approach

3.1 From the object-oriented distributed
systems to the multi-agent systems

The agent concept comes from the Distribute
Artificial Intelligence and Multi-Agent Systems
field. Among the abundance of theoretical issue
such as cooperation matters [Smith 80], distribute
plan generation and execution [Lesser 87
knowledge and beliefs representation [Lefèvre 93
one particular problem appears to be fundament
when an agent has to complete a task it can n
solve on its own, how is it going to find the mos
accurate cooperating agent?

This issue is also essential in any object-orient
distributed system, which is a particula
multi-agent system. When a client object intends
run a remote object’s method, it has to look up i
the network to find the most accurate server. T
help the client, some special structures a
dedicated to guiding or even making the lin
between the client and the server. For instance,
trader concept [ODP 93] is used in the Ope
Distributed Processing architecture, such as t
ANSA platform [Deschrevel 93], to meet this need
It consists in a services directory which may b
built following the X.500 distributed directory
recommendations. The trader is used by the ser
objects, to declare the exported services, and by
client objects, to seek the relevant servers.

But the accuracy of the agent concept is not bou
to the server quest in a distributed environment.
can also be justified by its recent softwar
engineering aspect through the search of
agent-oriented method [Ferber 94]. Th
agent-oriented programmingconcept is presented
in [ODP 93] as a specialization of object-oriente
programming: themental stateof the agent takes
into account the notions of belief, decision
obligation; the basic types of communication com
from the speech-act theory (inform, request...).

ge

e
ir
the
s.

sic
n
a

ce

e:

in
e
he
w
it

e.
or

d
nt
d
n
l
n

no
at
l

s
e

ns
3.2 A multi-agent model

3.2.1 Making a uniform system

The first step of our “integrator principle” relies on
a homogeneous vision of the office information
system. Roughly speaking, the network links up a
set of machines (sites) which hold a fewresources.
These resources are likely to appear, disappear or
evolve: application software (e.g. database,
editors), migrating application entities (e.g.
circulating electronic documents), peripheral
hardware (e.g. printers), connected users. Each
resource holds a particular set of availableservices
which are associated with some specificattributes:

•The structural attributesare static, or weakly
dynamic when the service is upgraded. They
specify a particular implementation of a
service. For instance, they may consist in the
printer brand, the printing process and speed.

•The conjunctural attributes are typically
dynamic because they depend on the current
context. For instance, the context of a printing
service could consist in the size of the printing
queue, the unavailability for maintenance
matters, the number of remaining paper sheets.

When these resources need some other resources’
services, they are confronted with the basic
problem: they have to find the most suitable service
and therefore the accurate server. This implies
coping with two issues:

(1) being able to contact the resources although
the system is dynamic;

(2) being able to negotiate as precisely as
possible to get the most accurate service.

First, as both points require a great deal of
interoperability, the resources have to be integrated
into a uniform representation of the overall system.
Thus, each resource is associated with an object
whose role consists in representing it for the other
resources. The projection of the system entities
results in the creation of a uniform layer (cf. figure
1) where the servers quests and the services
negotiations occur.

Secondly, point (1) introduces the need for special
structures and associated protocols whose aim is to
provide servers with clients and clients with
servers. The first idea is the services directory and
the implementation of trader objects but other
structures could be imagined (e.g. analogy with
classified advertisements, yellow pages). Any
agent, at creation time, has to know at least one

structure of this kind, as well as its associated usa
protocols.

3.2.2 From the object to the agent

Our approach will be in vain unless the objects w
are introducing hold some information about the
resources and the provided services, as well as
overall system and some particular resource
Moreover, these objects have to know some ba
protocols and share a common negotiatio
language. Such an object, which behaves like
unique controller and representative of a resour
and its associated services, is called anagent. It can
be considered as an active interface for a resourc

• it acts like aclientwhen it looks for servers and
negotiates services for its resource;

• it behaves like aserver when it tries to
cooperate with the other clients.

Thus, the behaviour of the agent consists
permanently listening to the internal (i.e. from th
resource it represents) and external (i.e. from t
other resources) requests. Moreover, it may follo
a private activity such as supervising some tasks
is responsible for, or consulting the system (i.
other agents) and organising its knowledge f
learning matters.

If the object concept is currently rather clear an
widely shared, it is not the case as far as the age
notion is concerned. In fact, this word is often use
in various situations, as if there existed a
immanent definition, but without any rea
consensus. Moreover, a confusion is ofte
introduced with the actor notion.

The agent concept is not mature yet and there is
universal agent model. This context allows a gre
variety in the multi-agent research field which wil
benefit from this diversity. But it also results in
some groping and communication difficultie
between research workers. It is the reason why w
will now define more precisely our point of view.

word
electronic

processor

printer

user

The agents world: cooperarion and service negotiatio

figure 1: making a uniform system representation

document
object

resources

a
ce
is

g
ir

d
.
of
el
e
ds

e
e

a

a
l
nd
g
re
w.

ld
e

le

n
nt.
is

at
g.
ce
e
t

r
t

t
a
d

g

The actor term may have two meanings: either it is
a generic notion which deals with any active entity
playing a role in a system, or it is a reference to the
actor model [Agha 88] for parallel computing and
its resulting actor languages and systems. The
former case is near our conceptual view of agents.
In the latter case, the actor model can be considered
only as a special way of implementing agents.

Compared to the object, the agent gets more
autonomy and encapsulation: it follows its own
independent activity, guided by its own will. It is
also characterised either by high level or emergent
(cf. artificial life) communication protocols ().
Finally, it is associated with the skill notion. In our
model, an agent skill is represented by the set of
services it offers, refined by some attributes.

4. Implementing the model

4.1 An object-oriented distributed system:
COOL

The Chorus Object Oriented Layer was specified
by SEPT in order to allow the actual distribution of
applications such as the Intelligent Circulation of
Distributed Folders. This application had already
been conceived an object oriented way and had
mostly been implemented in C++. COOL v1 [Lea
91] mainly embeds the communication features of
the Chorus distributed system micro-kernel into an
object oriented layer, available via C++ as a COOL
class (figure 2).

Any object from this class possesses blocking
(call/reply) and non-blocking (send/receive)
communication methods, and communication
groups management methods. Such an object is
able to migrate from site to site through the
network, to synchronously call another COOL
object’s method (in the same address space with
COOL v1, or in a transparent distributed way with
COOL v2 which is being released). It may own a
mail-box and may be either passive or execute its
own activity.

Various facilities are also available such as
semaphore object class and a persisten
management. Finally, the communication system
completed with a distributed symbolic namin
service which allows the objects to register the
mail-box address using chosen names.

4.2 Introduction of a high level language:
Prolog

The use of C++ is justified by its
object-orientedness and its efficiency inherite
from C, the UNIX systems traditional language
But it appears to be limited and not to meet some
our needs: knowledge representation, high lev
negotiation language, “intelligent” and adaptiv
behaviours... The steps we performed towar
Distributed Artificial Intelligence with our
multi-agent approach, called our attention to th
traditional languages of this field. As a result, as w
could not do without the COOL facilities, we
decided to integrate one of these languages in
C++ object.

Prolog was chosen for several reasons. From
general point of view, Prolog is a high leve
interpreted language, featuring a uniform data a
program representation. Hence, by addin
communication predicates, Prolog programs a
able to exchange knowledge as well as know-ho
Within our model, this facility allows the
propagation of new procedures or the update of o
ones. The agents can dynamically upgrad
themselves(2), without interrupting their
functioning. Besides, this technique is also suitab
in a heterogeneous environment.

Moreover, Prolog gives a common communicatio
language base which is shared by every age
Originally conceived as a natural language analys
tool, Prolog is a very efficient support for the
definition and interpretation of new languages th
may be designed for our specific needs (e.
constraints expression language for servi
negotiations). At last, our agents benefit from th
powerful unification engine in order to implemen
some more or less clever reasoning.

A multi-agent model in the Human-Compute
Cooperative Work field has been carried ou
already in the IMAGINE [Haugeneder] Espri
project. It has resulted in the development of
parallel Prolog based multi-agent environment an
tool-box. The approach is very near ours: mixin

interface

C++ object

activity

communication
port

object.method()

figure 2: COOL as an extension of an object model

2. a Prolog program can consult and edit itself

re

d
g
ny
s
ith
e
to

g

s
x

t,
r

ore

s:
g
e
it

es

e

r
g
is
d

y
d

both the Computer Supported Cooperative Work
research, which aims at assisting the cooperation
between human agents by the use of computer
resources, and the DAI anthropomorphic
cooperation models, so as to make it easier for the
users and the applications to interact and cooperate.
But this work does not benefit from the support of
an object-oriented distributed system such as
COOL. Nevertheless, further investigations about
this project will be necessary.

4.3 Prolog Upgrade for Multi-Agent system

4.3.1 Overview

PUMA results from the integration of a Prolog
interpreter into a COOL object. This integration is
double:

•Prolog is integrated into COOL, which means
that a C++/PUMA object owns a Prolog kernel
as well as the associated control interface.

•COOL is integrated into Prolog, as the COOL
features are embedded into Prolog
communication predicates

This double faced integration results in the ability
for the developer to conceive compound objects
whose activity is a C++ program making Prolog
calls from time to time, or a Prolog program calling
some C++ procedures, or the combination of both.
The methods and predicates the C++/Prolog
interactions rely on, are presented in figure 3. From

a general point of view, these features are
interesting simply because of the fact that these
languages are suited to different tasks (this remark

partly explains the agents’ symbols chosen in figu
1).

4.3.2 ThePUMA class

The PUMA class holds the complete access an
control interface to the Prolog kernel. The Prolo
dialect features new predicates embedding ma
COOL functions. Communication predicate
include asynchronous messages delivery w
group facilities. The synchronous call predicat
makes it possible for a PUMA program to access
another PUMA object’s prolog kernel. PUMA
objects may also create other COOL derivin
objects.

Migration is also an interesting PUMA feature. A
a matter of fact, COOL doesn’t solve the comple
activity migration issue: the COOL object activity
is restarted from zero after each migration. Bu
with a PUMA object, migration is transparent fo
any Prolog program that calls themigrate/1
predicate, thanks to the Prolog state save/rest
feature.

ThePUMAconstructor method takes two argument
the symbolic name of the object for the namin
service and the name of the initial Prolog file to b
loaded. As this class does not define any activity,
is typically bound to be used by operational class
through inheritance, but it is also likely to be
directly used in two ways:

•actions can be performed by defining th
PUMA creation reflex in the initial Prolog file;

•otherwise, thePUMAobject can be used as a
passive Prolog server by otherCOOLderiving
objects.

4.3.3 The PUMA derived classes (figure 4)

The interp class defines an interactive interprete
activity and its instances exactly behave like Prolo
interpreters with an extended dialect. This class
quite useful for debugging, observing, an
perfectingPUMAobjects. To a certain extent, it can
be also useful for anyCOOLderiving object as the
added predicates embed many COOL functions.

The agent class defines a generic agent activit
(see figure 5) which consists in repeated an

synchronous callasynchronous call

figure 3:C++ (COOL) - Prolog (PUMA)
communications

Prolog

PUMA object

COOL

send/2

interrupt/1

C++

common
mailbox

Prolog

COOL

C++

common
mailbox

standard C++

pu
m

a_
ca

ll(
)

objectSend()

phone/1

PUMA object

method call

COOL

PUMA

interp agent

MASobject

figure 4: the basic
PUMA classes

r
ls
t

the

a
n
e,
ns
he

he
its
rs
ly
ut
f

nd
re

is
nd

has
r

e it
l
e

t

r

es.
ific
continuous calls to a particular predicate
representing the elementary activity step. This
predicate has to be defined in the initial Prolog file.
The step typically consists in reading and
processing one message -if any- from the mail-box.
There may be also an individual task to run but
each step should be as fast as possible:

• to avoid a mail-box overflow,
• to keep the Prolog kernel available enough for
external synchronous calls (the Prolog kernel
has to be invoked through mutual exclusion).

If an agent has to perform a long lasting task, it may
create another agent whose activity is dedicated to
this task.

At last, anyCOOLderived class can be automatically
and almost transparently linked to a privatePUMA

agent by inheriting from theMASobject class. The
instance of anMASobject deriving class holds
attributes recording the agent mail-box address for
asynchronous messages and the agent’s object
address for synchronous calls (i.e. standard C++
method calls). Moreover, the agent automatically
follows the object it is associated with during its
migrations and it may execute some programmable
creation, migration and destruction Prolog reflexes.
The use of this class is related to the projection
principle of the system resources in a homogenous
agents layer.

5. Implementation example

5.1 A multi-agent meeting room
reservation system

We will now describe the implementation of ou
model in an actual and simple case, using the too
we have just presented. This multi-agen
reservation system uses two main agent types:
room agents and the user agents.

Each meeting room is exclusively represented by
private agent which maintains some informatio
about its structural attributes (equipment, siz
place...) and conjunctural attributes (reservatio
planning, scheduled repairs...). The agent is t
complete interface to the typical meeting room
services: reservation and cancellation.

When a user wants to reserve a meeting room, t
corresponding service can be invoked through
user agent which in turn contacts the right serve
(i.e. the room agents). Hence, this agent is not on
in charge of representing the user in the system, b
it is also the entry point towards the whole set o
available services.

The user and room agents arepermanentbecause
they represent some resources of the system a
their appearing and disappearing is a ra
occurrence. Thetemporaryagents are dynamically
created in order to execute one particular task. Th
kind of agent is not associated with a resource a
disappears as soon as its mission is completed.

5.2 The system components

5.2.1 The permanent agents

As a permanent agent represents a resource, it
to hold a minimal administration interface: the use
who created such an agent has to be able to mov
onto another site, or to kill it. The agent + contro
interface compound entity is implemented with th
MASobject deriving interface class. This results
in the definition of two parallel activities: the agen
activity and the interface activity, typically waiting
for an event from the user.

The minimal control interface also offers the use
the possibility of invoking the agent in order to
access the local or system wide available servic
Now, each resource type is associated to a spec
set of services. Each service may be eitherinternal
or external, according to the ability of the agent to
execute it by itself or by invoking another agent.

THE C++ LEVEL ACTIVITY :
void agent::main()
{

puma_init();
do {

puma_P();
if (pstate != P_END)

puma_call(“activity.”);
puma_V();

} while (pstate != P_END);
puma_exit();

}

THE PROLOG LEVEL ACTIVITY STEP :
activity :-

read_one_message,
my_own_activity_step.

read_one_message :-
receive(Msg),
process_msg(Msg).

read_one_message.
process_msg(call(Goal)) :- % extendable message

Goal. % processing procedure

figure 5: PUMAagent activity scheme

f
t

wo
nto
or

f
g

nd
ry
as

m
e

e

ry
on

ey
ts
ce
are

r
d

.

e

to
et
g
ch
ult

a

is
es
te
ts
ith
,
,

As some services are likely to evolve or appear
dynamically in the system, the agents may have to
upgrade their services without disturbing their
functioning. Consequently, the use of Prolog to
define the various services seems to be quite a
convenient approach for declarative programming
and dynamic concerns.

As a result, in our system, the type of an entity is
defined in relation to two structures:

•C++ inheritance trees;
• sequence of loaded Prolog files.

By loading a particular Prolog file, each permanent
agent learns two internal services: the agent
attributes viewing service and editing service.
Room agents, by adding a specific Prolog file,
gather new internal services such as planning
consulting, room reservation and cancellation. As
far as user agents are concerned, they load another
specific file which defines an internal memento
service, but also two external services: room
reservation and reservation cancellation. Thanks to
this Prolog coded representation, agents are able to
modify their services or learn some new services
dynamically and then propose them to the interface.

5.2.2 Temporary agents

A temporary agent does not need any control
interface: it is created by another agent to perform a
particular mission and it disappears when this
mission is completed or when its creator tells it to
do so. It is made of anagent class object and a
specific sequence of Prolog files. There are many
types of temporary agents because they are
specialized in the field of the mission they must
carry out.

In our system, we use some temporary agents when
it takes a long time for a service to be executed, as
it is the case in the user agent memento service
example. Although it is an internal service, since
the agent manages autonomously with it, an
auxiliary agent is created to run the service each
time it is called. This way, we avoid disturbing the
agent functioning and its permanent listening to the
system with a user-interactive service.

The temporary agent runs the service and opens a
dialogue interface with the user. But, instead of
copying the memento data into its own database, it
directly gets each datum in the user agent database
each time it needs it. Thus, the information that the
user consults is permanently up-to-date, even if
he/she keeps the service running for a long time.
He/she may also run several times the same service

in parallel if he/she wants. Moreover, this way o
accessing information is quite efficient and no
costly because it uses a method call between t
objects in the same address space. The meme
service temporary agent disappears if the user
his/her agent tells it to do so.

This technique allows the parallel execution o
several local internal services, without duplicatin
information. It prevents the system from
redundancy and the resulting waste of memory a
coherence maintenance problem. But tempora
agents are also used to run migrating services,
illustrated by the protocol in 5.3.

5.2.3 The negotiation language

Neither the uniform representation of the syste
resources with client/server agents, nor th
availability of a common language (Prolog) for th
agents are enough to create a completeintegrator
principle. Some semantics must be shared by eve
agent in the system; otherwise, any communicati
and then any cooperation attempt is illusory.

Consequently, as the service abstraction is the k
element of cooperation in our system, the agen
have to be able to precisely describe the servi
they are expecting. To face this issue, our agents
given:

•a set of symbols, representing particula
services (e.g. print, reserve room) an
particular server types (e.g. printer, room);

•a set of unique attribute symbols (e.g
resolution, surface) for a given service field;

•a language to put some constraints on th
service attributes into words.

Our constraints language makes it possible
specify whether or not an attribute belongs to a s
or an interval. The generic constraints solvin
engine we implemented can be enriched by ea
agent to solve special cases by introducing defa
constraints and new domain dependant rules.

Moreover, the language takes into account
satisfaction notion which enriches the “or” notion
with ordered preferences. The satisfaction value
computed from a Prolog procedure and the valu
of some attributes. Thus, this language is qui
expressive and allows the formulation of reques
as complex as “reserve a room for 10 persons, w
an overhead projector, from 8:30 AM to 11:0 AM
preferably on the first monday of January 95
otherwise on another monday of January 95”.

e
ws
ed
g.
id

m,
om
as
f.
e
t
it

of

er
om

o a
he
, a

al
d:
to
ed

it
d

ts
he
ly
. It
o
s
nt
s
.
e

ts
sal
er
the
n
d

its
.

he
m.
5.3 A cooperation protocol example

5.3.1 Detailed description

The cooperation protocols our system is based on
makes use of the Chorus group communication
features. Our cooperation structure is associated
with two protocols: the management of the
structure and its use by the clients when they are
looking for a server (cf. figure 6). We tried to avoid

the drawbacks of some costly protocols such as the
contract net protocol [Smith 80]:

• communication network overload;
•agents mail-boxes overflow;
•agents message processing overhead.

The structure we implemented consists in making
the agents from a given field maintain a kind of an
artisan group. This group aims at satisfying the
clients instead of competing. As soon as a room
agent is created in the system, it broadcasts a
declaration message to the room group. Then, each
member of the group returns a message to declare
their belonging to the group(3). Since each
declaration message contains the structural

attributes (surface, equipment, place...) of th
sender agent, each room agent permanently kno
the other room agents and their associat
structural attributes. Conjunctural attributes (e.
reservations planning) are not transmitted to avo
misusing the group broadcast facility.

When a user wants to reserve a meeting roo
he/she invokes his/her agent and chooses the ro
reservation service. This is an external service
the user agent can not complete it by itsel
Moreover, the agent is not able to put th
constraints for this service into words since it is no
an expert in the room reservation field. Therefore,
has to contact a room agent and tell it the kind
service it is expecting but without any precision.

Now, our structure shows its attractiveness: the us
agent does not broadcast its request to the ro
group but uses the Chorus so-calledfunctional
mode. It consists in sending a unique message t
random member of the destination group. Then, t
room agent replies by creating a temporary agent
kind of a commercial agent, whose mission is to
manage with the client’s request. Thus, the physic
and logical distribution of the problem is respecte
the complete request for a given service is put in
words by an expert of the concerned field, creat
by a specialised artisan from a remote site.

As soon as the commercial agent is created,
copies the room agents list with their associate
structural attributes by directly accessing to i
creator’s Prolog database. Then, it migrates to t
client site and opens a window so as to interactive
establish a complete service request with the user
asks him/her for the main constraints but als
directly gets information from the user agent’
Prolog database. Since the commercial age
knows the structural attributes of every room, it i
able to make a list with the relevant rooms
Afterwards, the list is ordered by examining th
satisfaction criterion(4) for each selected server.

Finally, the commercial agent successively contac
the potential servers as long as it receives refu
answers for unavailability matters. When a serv
accepts the request, the commercial agent gives
contract to the user agent. The reservatio
information is transmitted to the user and recorde
for a future use (e.g. memento service). Once
mission is completed, the commercial agent dies

3. A similar protocol (“hello protocol”) is used by the Chorus
micro-kernel when a site is appearing (i.e. booting) on the
network in order to guess its incarnation number, which is
necessary for unique identifiers generation.

group management:
declaration of a new member

figure 6: special group protocols

1

2

new membergroup

group invocation:
use of a commercial agent

client (user agent)

commercial agent

1

2

3
4

5

1: uncomplete service request;
2: creation and migration of the commercial agent;
3: interactive set-up of a complete service request;
4: complete service request;
5: service contract.

random
intermediate agent

the “best”
server

declaration message 1&2 = name + structural attributes

4. The satisfaction criterion defaults to a best fit between t
needs of the client and the equipment and size of the roo

n
ite
in

;
n

by
;

ur
a
e

s a
t.
o
so
rily

r

5.3.2 Justifications and comments

The accuracy of this structure and associated
protocols relies on a few assumptions which are
met in our example. On the one hand, it is supposed
that the service quest is a usual phenomenon
whereas a server appearing, disappearing or
modification is an unusual phenomenon. As a
matter of fact, the server seek protocol is clearly
optimized (the communications are spread over
time with few messages and no broadcast) whereas
the internal group management is rather a heavy
duty. On the other hand, there should not be too
many group members to avoid a penalizing server
declaration overhead.

Practically, we can try to evaluate the performance
of this structure. As far as the management protocol
is concerned, the declaration of the (n+1)th member
in a n-members group causes 2n messages to be
sent. n messages are sent in the same broadcast and
n other ones are individually sent. Moreover, n of
these messages are mailed in the same mailbox.
From a general point of view, as we allow data
replication, our assumptions aim at making sure
that consistency maintenance is not too costly.

The evaluation of the server seek protocol is harder
to figure out because it is context dependant, but we
can try to compare it to the typical contract net
protocol. In a formal way, table 1 tries to figure out
the communication costs for both protocols(5) (n is
the number of group members). We first notice that
the commercial agent migration, which is costly but
used only once, prevents the negotiation phase from
many messages that would have been caused by a
remote interaction between the user and the
commercial agent. Moreover, the fact that the
commercial and the client agents are in the same
address space allows fast and communication
system load independent interactions. It also allows
the commercial agent to get information from the
user agent without bothering the user.

We insist on the differences between the migratio
and the message sending, which may not be qu
obvious as an interpreted program can move with
a message. We distinguish:

•passive messages, which contain simple data
•active messages, whose content is a
interpretable program that can be executed
the receiver, even in a heterogeneous system

•possibly active binary object migration, only in
homogeneous systems.

We choose the migration technique because o
objects are two-headed: a binary object and
Prolog program. It could be possible to migrate th
Prolog part through messages but, since there i
message size limit, it would not be convenien
Moreover, the binary part of the object has t
migrate anyway, as it contains its own data and al
because its class text segment is not necessa
present in the destination site.

5. Of course, the accuracy of this comparison depends on the
assumptions we described which make the punctual group
management communications insignificant.

contract net group

the best

- n tender requests
- 1 tender
- 1 contract
- 1 execution report

- 1 tender request
- 1 migration
- 1 service request
- 1 execution report

n+3 messages 3 messages, 1 migration

the worst

- n tender requests
- n tenders
- n contracts
- n rejectionsa

a.The server may accept contracts during the
delay between its sending the (non guaranteed)
tender and its receiving the contract, which
causes it to reject the contract.

- 1 tender request
- 1 migration
- n service requests
- n rejections

4n messages 1+2n messages,
1 migration

“average”

- n tender requests
- n/2 tenders
- n/4 contracts
- n/4 messages
(rejections + 1 report)

- 1 tender request
- 1 migration
- n/4 service requests
- n/4 messages
(rejections + 1 report)

2n messages 1+n/2 messages,
1 migration

table 1 : evaluation of the basic CNet protocol and ou
group protocol

is

.

n
e
L,
,
to
le
s

up
ent
r
s
d
ly
s,

e
s
nts
it
a

y
of
se
he
a
s
al
ns
a

]),
n

f
ent
s.

s,
be
d
ed
h

f
er
5.4 Practical concerns

The system runs on three Chorus micro-kernel
based PC(6) and shows the great efficiency of the
group protocol and of the communication system,
integrated in the micro-kernel. Nevertheless, our
system needs a lot of resources, specially because
of the many parallel activities. It was also tested on
a stronger hardware configuration (SPARCstation
10) which offers more power but introduces a
serious communication bottleneck, as it still runs a
Chorus simulator instead of a native Chorus
micro-kernel based system.

The size issue for the PUMA objects is rather an
interesting point and we will now explain it in some
detail. The text and data segments of theagent and
interp classes (cf. 4.3.3) do not exceed 17K,
because the binary part of the Prolog interpreter is
integrated into the address spaces on each site.
Each address space also includes the COOL library
and its text and data size is about 120K. Dynamic
memory allocation essentially springs from the
Prolog interpreter whose code is partly written in
Prolog. Once the Prolog files are loaded, the Prolog
database fills about 100K.

So, it is important to find the balance and make the
components of our system fit one another: COOL,
the hardware configuration and the integrated
language. For instance, we note that each PUMA
object carries about 60K for the Prolog part of the
interpreter whereas this part is identical in every
object. It could be shared by all the objects in a
given address space if it was written in a compiled
language.

6. Conclusion

6.1 The current results

This article proposed an agent-oriented integration
and cooperation rough model for the resources
(software, hardware, human) which are reachable
through an office information system. In the
Computer Supported Cooperative Work and
Human Computer Cooperative Work context, our
purpose is to make it easier for servers and clients
to meet each other as well as to enrich the
negotiation phase:

• in order to help the client to find quickly the
most accurate service for its needs,

•although overall service tender of the system
typically dynamic,

•without saturating the communication system

Once having dealt with the need of a
object-oriented distributed technology, we hav
presented the various layers and tools (COO
PUMA and deriving classes, Prolog files
constraints solving) that we have chosen or built
implement our model. A pragmatic system examp
(multi-agent meeting room reservations) illustrate
our approach. We also introduced a special gro
structure and its associated use and managem
protocols which aim at making it quick and easy fo
a client to find the most relevant server. Thi
structure is designed for frequently invoke
services which are executed by few and weak
dynamic servers (e.g. meeting rooms, printer
facsimile...)

But there still remains some work to be done on th
model. First of all, we did not deal with the entitie
and system granularity issue. As far as the age
are concerned, their granularity is rather high, but
could be imagined to conceive each agent as
multi-agent system in order to more rigorousl
shape our system development. The granularity
the system is also a very important point becau
our structures efficiency depends on the size of t
physical searching space. Our model typically fits
Local Area Network with local services, semantic
and rules. Then, we may think about a speci
structure type which allows enhanced interactio
between several LAN through a Metropolitan Are
Network. Similarly, but with tough translation and
semantics issues (see an approach in [Lee 89
there should be wide area network cooperatio
agents in each LAN or MAN.

Our model would also benefit from a higher level o
shared semantics (meta representation) for ag
adaptability and domains interconnection matter
At last, since many protocols, auxiliary structure
message types, agent types are likely to
implemented in an overall multi-agent integrate
information system, there lacks an agent orient
computer aided software engineering tool whic
takes into account the Prolog part.

6.2 Future prospects

6.2.1 The multi-agent approach

The multi-agent approach seems to be full o
promise and we envisage the development of oth
applications, structures and protocols.6. These computers are 66 MHz 486 PC running

CHORUS/Fusion for SCO UNIX.

n
g

ed
st

,

es
e
,

.

d

s.

es

e

s,

c

The first application is an “intelligent” mailing
service allowing the recipients to be specified
according to some criteria. Within our model, it
consists in finding the agent(s) whose attributes
match a constraints set. We would like to use a kind
of a directory agents structure that would be
distributed. The invocation of this structure will be
a simple service request: “find an agent that
matches these constraints...”. There also should be
some local optimization with site agents, designed
according to the fact that most of the agents from
one site generally deals with a limited number of
remote agents.

Another application consists in a multi-agent
implementation of CIDRE, our intelligent
circulation of distributed folders application, which
is the historical origin of our multi-agent approach.
This application is physically and logically
distributed by nature and is likely to benefit from
our model, tools, structures and protocols:

•A declarative circulation schema representation
makes it possible for an administrator to
intervene during a circulation and modify it.

•Prolog/PUMA is a good support for an
on-board “intelligent” schema execution engine
(time, cost or quality optimization), and an
on-board jamming management expert system
(so-called “exception handling”).

•The user agents may know enough information
to be able to automatically propose the answers
when the user has to fill some particular fields
in an electronic form (e.g. address, name,
birthday, phone number, department and role in
the organization).

•The agents may hold the unavailability and
delegation information...

6.2.2 The scripting language approach

We mostly presented PUMA as a multi-agent
system implementation tool, but its attractiveness is
not limited to this concern. A PUMA object also
gives an access to an object-oriented distributed
system through an interpreted language (cf.interp

class in 4.3.3). Thus, PUMA is a step towards the
scripting languageprinciple, which is more and
more popular among:

• the object-oriented distributed systems
developers (shell, debugger...);

• the programmers who could quickly build
new applications;

• the users who would like to easily tell
autonomous entities (“agents”) to perform
some more or less complex tasks.

PUMA is only a first step which was not originally
designed for this approach. SEPT, in collaboratio
with Chorus systèmes, are currently amplifyin
their work in this field: COOL is being thoroughly
upgraded (version 2 is to be completely releas
soon) and some studies try to specify the mo
accurate scripting language.

ACKNOWLEDGMENTS

This work was led in collaboration with Patrice
Enjalbert from LAIAC - Université de Caen.

Special dedication to Christophe “tof” Trompette
the originator of the first PUMA interpreter.

REFERENCES

[Agha 88] Gul Agha. Actors, A Model of
Concurrent Computation in Distributed
Systems.MIT Press 1988

[Barat 93] Michel Barat, Jean Erceau.Utilité et
utilisation d’un principe intégrateur dans un
outil de conception de systèmes complex
multi-experts. 2ème congrès européen d
systémique, vol. III pp 860-869. Prague
october 1993.

[Deschrevel 93] Jean-Pierre Deschrevel.The
ANSA Model for Trading and Federation
Architecture Report, ANSA phase III,
Architecture Projects Management Limite
1993

[Deshayes 89] Jean-Marc Deshayes, Vadim
Abrossimov, Rodger Lea.The CIDRE
distributed object system based on Choru
Proc. of TOOLS’89.

[Desreumaux 93] Marc Desreumaux.Pourquoi
les entreprises ont-elles besoin de systèm
d’information flexibles ?Tome 7, 1er congrès
biennal AFCET, Versailles, june 1993.

[Ferber 94] Jacques Ferber.BRIC : essai de mise
en perspective d’une méthodologi
multi-agent. Journée d’étude AFCET
“méthodes orientées agents”, Pari
septembre 14th, 1994

[Haugeneder] Hans Haugeneder.IMAGINE Final
Project Report. ESPRIT project 5362,
IMAGINE Consortium

[Lea 93] Rodger Lea, Christian Jacquemot, Eri
Pillevesse. COOL: system support for
distributed programming.Communications
of the ACM, Vol.36, No.9, 1993.

[Lea 91] Rodger Lea, James Weightman.
Supporting object oriented languages in a
distributed environment: The COOL
approach.Proc. of TOOLS USA ‘91, Santa
Barbara, CA, july 1991

[Lee 89] Jintae Lee, Thomas W. Malone.How can
groups communicate when they use different
languages? Translating between partially
shared type hierarchies.technical report
CCSTR#103, SSM WP #3076-89-MS, MIT,
September 1989

[Lefèvre 93] Claire Lefèvre, Claire Beyssade.
Système multi-agents et modalités
épistémiques. Premières journées
francophones IAD & SMA, Toulouse 1993

[Lesser 87] V. Lesser, D. Corkhill. Distributed
problem solving.Encyclopedia of Artificial
Intelligence, Vol. 2 (1987), 245-251

[ODP 93] Basic Reference Model of Open
Distributed Processing: non-normative
(descriptive) specification of trader.ISO/IEC
JTC 1/SC21 WG7 N, Standards Australia
1993

[Shoham 93] Yoav Shoham. Agent-oriented
programming. Artificial Intelligence 60
(1993), Elsevier, 51-92

[Smith 80] R.G. Smith. The Contract Net
Protocol: High-Level Communication and
Control in a Distributed Problem Solver.
IEEE transactions on computers Vol. C-29,
No. 12 (december 1980), 1104-1113

[Thiétart 93] R.A. ThiétartOrdre et Chaos dans
les Organisations.Journée d’étude AFCET
“Les Systèmes d’Information, Autonomie et
Chaos”, Paris, november 24th, 1993.

	Keywords
	Abstract
	1. Introduction
	2. The needs
	2.1 Why an object-oriented distributed technology?
	2.2 Why advanced behaviour and interactions?

	3. Towards a multi-agent approach
	3.1 From the object-oriented distributed systems to the multi-agent systems
	3.2 A multi-agent model
	3.2.1 Making a uniform system
	3.2.2 From the object to the agent

	4. Implementing the model
	4.1 An object-oriented distributed system: COOL
	4.2 Introduction of a high level language: Prolog
	4.3 Prolog Upgrade for Multi-Agent system
	4.3.1 Overview
	4.3.2 The PUMA class
	4.3.3 The PUMA derived classes (figure 4)

	5. Implementation example
	5.1 A multi-agent meeting room reservation system
	5.2 The system components
	5.2.1 The permanent agents
	5.2.2 Temporary agents
	5.2.3 The negotiation language

	5.3 A cooperation protocol example
	5.3.1 Detailed description
	5.3.2 Justifications and comments

	5.4 Practical concerns

	6. Conclusion
	6.1 The current results
	6.2 Future prospects
	6.2.1 The multi-agent approach
	6.2.2 The scripting language approach

	Acknowledgments
	References

